

How 2 HAWC2, the user's manual

Torben J. Larsen, Anders M. Hansen

Edited by the DTU Wind Energy HAWC2 Development Team

Risø-R-1597(ver. 13.0)(EN)

Risø National Laboratory

Technical University of Denmark

Roskilde, Denmark

May 2023

Authors: Torben Juul Larsen, Anders M. Hansen. Edited by the DTU Wind and
Energy Systems HAWC2 Development Team
Title: How 2 HAWC2, the user’s manual
Institute: Department of Wind and Energy Systems

Abstract:
The report contains the user’s manual for the aeroelastic code HAWC2. The
code is intended for calculating wind turbine response in time domain and has a
structural formulation based on multi-body dynamics. The aerodynamic part of
the code is based on the blade element momentum theory, but extended from the
classic approach to handle dynamic inflow, dynamic stall, skew inflow, shear
effects on the induction and effects from large deflections. It has mainly been
developed within the years 2003-2006 at the aeroelastic design research
programme at Risoe, National laboratory Denmark, but is continuously updated
and improved.
This manual is updated for HAWC2 version 13.1 and wkin.dll version 2.8.5.

Risø-R-1597(ver. 13.1)(EN)
March 2024
ISSN 0106-2840 ISBN
978-87-550-3583-6
Groups own reg. no.: 1110412-3

Technical University of Denmark
DTU Wind Energy
Frederiksborgvej 399
4000 Roskilde
Denmark
Telephone +45 45 46774004
bibl@risoe.dk
Fax +45 46774013

- 3

Contents

Cover 1

Table of contents 4

1 Preface 9

2 Acknowledgements 10

3 Contributors 10

4 Getting started with HAWC2 11

4.1 Running HAWC2 11

4.2 Folder structure 11

4.3 Debugging models 12

5 General input layout 13

5.1 Continue_in_file option 13

6 HAWC2 version handling 14

7 Coordinate systems 15

8 Simulation 17

8.1 Main command block - Simulation 17

8.2 Sub command block - newmark 18

9 Structural input 19

9.1 Main command block - new_htc_structure 19

9.2 Sub command block - main_body 20

9.3 Sub command - orientation 31

9.4 Sub command - constraint 34

10 DLL control 42

10.1 Main command block – dll 42

10.2 Important note about DLL file names 42

10.3 Sub command block – hawc_dll 43

10.4 Sub command block – type2_dll 44

4 -

10.5 Sub command block - init 45

10.6 Sub command block – output 45

10.7 Sub command block – actions 45

10.8 hawc_dll format example written in FORTRAN 90 48

10.9 hawc_dll format example written in Delphi / Lazarus / Pascal 49

10.10hawc_dll format example written in C 50

10.11type2_dll written in Delphi / Lazarus / Delphi 51

10.12type2_dll written in C 52

10.13type2_dll format example written in FORTRAN 90 53

11 Wind and Turbulence 56

11.1 Main command block -wind 56

11.2 Sub command block - mann 58

11.3 Sub command block - flex 62

11.4 File description of a user defined shear 62

11.5 Example of user defined shear file 63

11.6 File description of a user defined shear turbulence 63

11.7 Example of user defined shear turbulence file 63

11.8 Sub command block - wakes 64

11.9 File description of a user defined wake deficit file 65

11.10Example of user defined wake deficit file 66

11.11Sub command block – tower_shadow_potential 67

11.12Sub command block – tower_shadow_jet 67

11.13Sub command block – tower_shadow_potential_2 67

11.14Sub command block – tower_shadow_jet_2 68

11.15Sub command block – user_wind_dll 68

11.16Sub command block – turb_export 69

11.17How the wind speed is constructed 69

12 Aerodynamics 71

12.1 Main command block - aero 71

12.2 Sub command block – dynstall_so 73

12.3 Sub command block – dynstall_mhh or dynstall_ateflap 73

12.4 Sub command block – aero_noise 76

12.5 Sub command block – bemwake_method 78

12.6 Sub command block – nearwake_method 79

12.7 Sub command block – vawtwake_method 80

- 5

12.8 Data format for the aerodynamic layout 81

12.9 Example of an aerodynamic blade layout file 82

12.10Data format for the profile coefficients file 83

12.11Example of the profile coefficients file “_pc file” 83

12.12Data format for the flap steady aerodynamic input (.ds file) 84

12.13Example of a .ds flap steady aerodynamic input file 85

12.14Data format for the user defined a-ct relation 85

12.15Data format for the trailing edge noise model (bldata) 86

12.16Example of a trailing-edge noise model file (bldata) 87

12.17Main command block – blade_c2_def (for use with old_htc_structure format)
87

12.18Data format for the user defined a-ct table 88

13 Aerodrag (for tower and nacelle drag) 89

13.1 Main command aerodrag 89

13.2 Subcommand aerodrag_element 89

14 Hydrodynamics 90

14.1 Main command block - hydro 90

14.2 Sub command block – water_properties 90

14.3 Sub command block – hydro_element 91

14.4 Description of the water_kinematics_dll format. 92

14.5 User manual to the standard wkin.dll version 2.8.3 93

14.6 Main commands in the wkin.dll 94

14.7 Sub command reg_airy 94

14.8 Sub command ireg_airy 94

14.9 Sub command det_airy 95

14.10Sub command strf 96

14.11Sub command wavemods 96

14.12Wkin.dll example file 97

15 Soil module 99

15.1 Main command block - soil 99

15.2 Sub command block – soil_element 99

15.3 Data format of the soil spring datafile 99

16 External forces 101

16.1 Main command block – Force 101

6 -

16.2 Example of a DLL interface written in fortran90 101

16.3 Example of a DLL interface written in Lazarus / Pascal 102

17 Output 104

17.1 Only option 104

17.2 Label option 104

17.3 Custom sensor name, unit and description 104

17.4 Derived sensors 104

17.5 Commands used with results file writing 105

17.6 File format of HAWC_ASCII files 105

17.7 File format of HAWC_BINARY files 106

17.8 File format for gtsdf and gtsdf64 files 108

17.9 Hub- and nacelle-lidar sensors 108

17.10mbdy (main body output commands) 108

17.11Constraint (constraint output commands) 113

17.12aero (aerodynamic related commands) 114

17.13wind (wind output commands) 122

17.14wind_wake (wind wake output commands) 123

17.15dll (DLL output commands) 123

17.16hydro (hydrodynamic output commands) 124

17.17External forces 126

17.18general (general output commands) 127

18 Output_at_time (output at a given time) 128

18.1 aero (aerodynamic output commands) 128

19 Input file encryption 131

19.1 DLL format 131

19.2 Encrypted binary format 131

20 Examples and Reference Models 133

References 135

A Example of main input file 136

B User guide for user-wind-dll 146

C Fit of structural damping 148

- 7

D ESYSMooring user guide 153

E ESYSWAMIT user guide 160

F Code Version Data 165

8 -

1 Preface

The HAWC2 code is a code intended for calculating wind turbine response in time domain. It
has been developed within the years 2003-2006 at the aeroelastic design research programme
at Risoe, National laboratory Denmark.

The structural part of the code is based on a multibody formulation where each body is an
assembly of Timoshenko beam elements. The formulation is general which means that quite
complex structures can be handled and arbitrary large rotations of the bodies can be handled.
The turbine is modeled by an assembly of bodies connected with constraint equations, where
a constraint could be a rigid coupling, a bearing, a prescribed fixed bearing angle etc. The
aerodynamic part of the code is based on the blade element momentum theory, but extended
from the classic approach to handle dynamic inflow, dynamic stall, skew inflow, shear effects on
the induction and effects from large deflections. Several turbulence formats can be used. Control
of the turbine is performed through one or more DLL’s (Dynamic Link Library). The format
for these DLL’s is also very general, which means that any possible output sensor normally
used for data file output can also be used as a sensor to the DLL. This allows the same DLL
format to be used whether a control of a bearing angle, an external force or moment is placed
on the structure. The code has internally at Risoe been tested against the older validated code
HAWC, the CFD code Ellipsys and numerous measurements. Further on detailed verification
is performed in the IEA annex 23 and annex 30 research project regarding offshore application.
Scientific papers involving the HAWC2 is normally posted on the www.hawc2.dk homepage,
where the code, manual and more can be downloaded. During the programming of the code
a lot of focus has been put in the input checking so hopefully meaningful error messages are
written to the screen in case of lacking or obvious erroneous inputs. However since the code is
still constantly improved we appreciate feedback from the users – both good and bad critics are
welcome. The manual is also constantly updated and improved, but should at the moment cover
the description of available input commands.

- 9

2 Acknowledgements

The code has been developed primarily by internal funds from Risø National Laboratory –
Technical University of Denmark, but the research that forms the basis of the code is mainly
done under contract with the Danish Energy Authority. The structural formulation of the model
is written by Anders M. Hansen as well as the solver and the linking between external loads and
structure. The anisotropic FPM beam model is written by Christian Pavese, Taeseong Kim and
Anders M. Hansen. The aerodynamic BEM module is written by Helge A. Madsen, Torben J.
Larsen and Georg R. Pirrung. Three different stall models are implemented where the S.Ø. (Stig
Øye) model is implemented by Torben J. Larsen, the mhh Beddoes model is written by Morten
Hansen, Mac Gaunaa and Georg R. Pirrung and the ateflap model used for trailing edge flaps
is written by Mac Gaunaa and Peter Bjørn Andersen and has later been rewritten by Leonardo
Bergami. The near wake model has been developed by Georg R. Pirrung, Ang Li, Helge Aa.
Madsen and Peter B. Andersen. The wind and turbulence module as well as the soil and DLL
modules are written by Torben J. Larsen. The hydrodynamic module is written by Anders M.
Hansen and Torben J. Larsen. The turbulence generator is written by JacobMann and theWAsP
Team and converted into a DLL by Peter Bjørn Andersen. The dynamic wake meandering
module is written by Helge A. Madsen, Gunner Larsen and Torben J. Larsen, and has been
further maintained by Jaime Liew. The eigenvalue solver is implemented by Anders M. Hansen
and JohnHansen. TheGitlab repository including automatic testing and compilationwas created
by Mads M. Pedersen and Anders M. Hansen. Torben J. Larsen and Anders M. Hansen were
the main authors of the manual up to version 4.7, and the main developers of HAWC2 up
to version 12.8. Maintenance of the codebase, webpage and the manual is performed by the
HAWC2 development team at DTU Wind Energy.

3 Contributors

Contributors to this manual and the HAWC2 code include but are not limited to:

Anders Melchior Hansen
Torben Juul Larsen
Peter Bjørn Andersen
Leonardo Bergami
Franck Bertagnolio
Kenneth Thomsen
Emmanuel Simon Pierre Branlard
Mikkel Friis-Møller
Christos Galinos
Mac Gaunaa
John Hansen
Morten Hartvig Hansen
Joachim Christian Heinz
Lars Christian Henriksen
Sergio González Horcas
Gunner Christian Larsen
Ang Li
Jaime Liew
Helge Aagaard Madsen

Jacob Mann
Taeseong Kim
Mads Mølgaard Pedersen
Christian Pavese
Georg Raimund Pirrung
Néstor Ramos García
Jennifer Rinker
Riccardo Riva
David Robert Verelst
Shaofeng Wang
Annop Wongwathanarat
Albert Meseguer Urban
Laura Voltá
Ozan Gözcü
Jenni Rinker
Fabio Pierella
Antonio Pegalajar-Jurado

10 -

4 Getting started with HAWC2

This section contains some basic overview information and tips on debugging fileswhen running
HAWC2. A more detailed description of the format of the input file is discussed in Section 5.

4.1 Running HAWC2

HAWC2 is run by calling the HAWC2 executable from a Windows Command Prompt on the
input file, which has a .htc file extension (see Section 5):

> <path to HAWC2 executable> <path to htc file>

For example, if the current working directory of the Command Prompt contains both your
HAWC2 executable and an input file called turbine_model.htc (which is not a recommended
folder structure, see below), the command to run HAWC2 would be

> HAWC2MB.exe turbine_model.htc

Important!Any relative paths in the htc file will be defined with respect to the current working
directory of the Command Prompt, not with respect to the file’s location.

To identify which version of HAWC2 is on the system, the "–version" flag can be used. This will
make HAWC2 print the version information of the program, and terminate without throwing an
error. An example of the call and output is shown below. This functionality is available from
version 13.

> HAWC2MB.exe --version

**

* Build information for HAWC2MB

* Aeroelastic tool HAWC2MB

* Intel, version 2021 , 20201112

* WINDOWS 32-bit

**

* GIT-TAG = 12.9.5

* GIT-BRANCH =

* BUILD_TYPE = Windows32 RELEASE

* BUILDER = ContainerAdministrator

* COMPUTER_NAME = RUNNER-UYZRLEJ3

* BUILD_DATE = Tue 06/21/2022

**

4.2 Folder structure

HAWC2 does not assume any folder structure, so the executable and the input file can be located
anywhere that is accessible by the Command Prompt. However, it is often best to separate
different wind turbine models so that their results do not overwrite each other. It can also
be nice to separate the HAWC2 executable from the input/output files in order to keep the
directories as clean as possible.

One way to do this is to place HAWC2 and all its required DLLs in one directory and
all of the files related to a specific turbine model in another directory. Let us demonstrate
this with an example. Assume that we have placed the HAWC2 executable and all related
DLLs in C:\hawc2\. We desire to run an htc file, called input_a.htc, that is located
in C:\Documents\turbine_models\prototype_a\htc\. However, the htc file contains
relative paths that are defined with respect to the prototype_a\ directory. In this case, we must
first change the working directory to the prototype_a\ directory so that the relative paths in

- 11

the htc file point to the correct files, and then we can call the HAWC2 executable on the input
files using an absolute path. The commands for this example would be as follows:

> cd C:\Documents\turbine_models\prototype_a\

> C:\hawc2\HAWC2MB.exe .\htc\input_a.htc

4.3 Debugging models

Although HAWC2 is run from the Command Prompt, the errors that are printed to it when
something goes wrong are often not illuminating to the average user. If something goes wrong
with your model, you should first check the output log to see what warnings and errors are
printed there. The output log is a text file ending in .log, and its location is determined by the
logfile option in the simulation block in the htc file.

One of the most common errors for new users is having the wrong working directory in the
Command Prompt, in which case the log file will state that it could not find the requested data
files. Other common errors when running time-marching simulations include bad simulation
parameters that lead to non-convergence or incorrect definitions of body properties. Regardless,
your first step when debugging a model should always be to look at the log file to determine
what went wrong. If you cannot find the source of your problem, you can email the HAWC2
support address (hawc2@windenergy.dtu.dk) to ask for help.

Important! HAWC2 is a flexible software with many different simulation options, so building
a model from the ground up is complicated and not recommended. We recommend starting
from a working model (see the HAWC2 website to download a working wind turbine model)
and incrementally making changes as needed.

12 -

5 General input layout

HAWC2 takes as input a text file with an .htc file extension. The HAWC2 input format is
written in a form that forces the user to write the input commands in a structured way so
aerodynamic commands are kept together, structural commands the same, etc. The order of the
blocks does not matter.

The input commands are divided into command blocks, which are defined using a begin-
end syntax. Each line must end with a semi colon “;” which gives the possibility for writing
comments and the end of each line after the semi colon. The command lines can be written with
any desired mix of capital or small letters because inside the code all lines are transformed into
small letters. This could be important if something case-sensitive is written (e.g., the name of
a subroutine within a DLL).

Important! All lines in an htc file must end with a semicolon, even if they are empty. You
may insert whitespace between blocks to improve readability by having a line that is just a
semicolon.

In the next chapters, the input commands are explained for every part of the code. The commands
are separated into “main block” commands (namely, those that belong to a begin-end command
block that is not part of a higher-level begin-end block) and “sub command blocks” (those that
belong to a begin-end block included within another block). An example is printed below.:
“simulation” is a main command block and “newmark” is a sub command block.

1 begin simulation;

2 time_stop 100.0 ;

3 solvertype 2 ; (sparse newmark)

4 ;

5 begin newmark;

6 beta 0.27;

7 gamma 0.51;

8 deltat 0.02;

9 end newmark;

10 end simulation;

5.1 Continue_in_file option

A feature from version 6.0 and newer is the possibility of continuing reading of the main
input file into another. The command word continue_in_file followed by a file name causes
the program to open the new file and continue reading of input until the command word exit.
When exit is read the reading will continue in the previous file. An infinite number of file levels
can be used. The HAWC2 input format is written in a form that forces the user to write the
input commands in a structured way so aerodynamic commands are kept together, structural
commands the same etc.

Command name Explanation
continue_in_file 1. File name (and path) to sublevel input file
exit End of input file. Input reading is continued in higher level input

file.

- 13

6 HAWC2 version handling

The HAWC2 code is still frequently updated and version handling is therefore of utmost
importance to ensure quality control. For every new released version of the code a new version
number is hard coded in the source. This number can be found by executing the HAWC2.exe
file without any parameters. The version number is echoed to screen. The same version number
is also written to every result file no matter whether ASCII or binary format is chosen.

All information covering the different code versions has been made. These data are listed in
appendix F.

14 -

7 Coordinate systems

The global coordinate system is located with the z-axis pointing vertical downwards. The x and y
axes are horizontal to the side. When wind is submitted, the default direction is along the global
y-axes. Within the wind system meteorological u,v,w coordinates are used, where u is the mean
wind speed direction, v is horizontal and w vertical upwards. When x,y,z notation is used within
the wind coo. this refers directly to the u,v,w definition. Every substructure and body (normally
the same) is equipped with its own coordinate system with origo in node1 of this structure. The
structure can be arbitrarily defined regarding orientation within this coordinate system. Within
a body a number of structural elements are present. The orientation of coordinate systems for
these elements are chosen automatically by the program. The local z axis is from node 1 to 2
on the element. The coordinate system for the blade structures must be defined with the z axis
pointing from the blade root and outwards, x axis in the tangential direction of rotation and y
axis from the pressure side towards the suction side of the blade profiles. This is in order to
make the linkage between aerodynamics and structure function.

In order to make a quick check of the layout of the structure the small program “animation.exe”
can be used (this requires than an animation file has been written using the command animation
in the Simulation block). The view option in this program is handled by keyboard hotkeys:

Animation Hotkeys:

translate: (shift)+{x,y,z}

rotate: arrow keys

rotate about line-of-sight: ctrl+left/right

zoom in: ctrl+up

zoom out: ctrl+down

amplify displacement (only for animation of natural frequencies): +

decrease displacement (only for animation of natural frequencies): -

If the animation does not start, press “s”

- 15

Figure 1: Illustration of coordinate system as result of user input from example in appendix A:
Example of main input file. There are two coordinate systems in black which are the default
coordinate systems of global reference and default wind direction. The blue coordinate systems
are main body coordinate systems attached to node 1 of the substructure, the orientation of
these are fully determined by the user. The red coordinate systems are also defined by the user,
but in order to make the linkage between aerodynamic forces and structure work these have to
have the z from root to tip, x in chordwise direction and y towards the suction side.

16 -

8 Simulation

8.1 Main command block - Simulation

Obl. Command name Explanation
* time_stop 1. Simulation length [s]

solvertype 1. Solver type (1=dense Newmark (default, more robust option),
2=sparse Newmark (faster and recommended, new in version
12.7))

initial_condition 1. Type of initial condition to use (1=undeflected (default),
2=static (recommended, new in version 13.0)). With
undeflected initial conditions, the position of the nodes at the
beginning of the simulation is defined by the c2_def and
orientation of each main body. Setting this parameter to 2 will
cause HAWC2 to solve a nonlinear static problem at the
beginning of the simulation, and use this deflected configuration
as initial condition. Only some forcing terms are considered for
this problem, namely: gravity, inertia, hydrodynamics and
external system constraints. Extending the static solver to
support general HAWC2 models is under development. The
rotor speed must be set as initial condition using “orientation /
base / mbdy_ini_rotvec_d1” or “orientation / relative /
mbdy2_ini_rotvec_d1”, but not “constraint / bearing3 /
omegas”.

solver_relax 1. Relaxation parameter on increment within a timestep. Can be
used to make difficult simulation run through solver when
parameter is decreased, however on the cost of simulation
speed. Default=1.0

on_no_convergence Parameter that informs solver of what to do if convergence is
not obtained in a time step.
1. ’stop’: simulation stops – default. ’continue’: simulation
continues, error message is written.

convergence_limits Convergence limits that must be obtained at every time step.
1. epsresq, residual on internal-external forces, default=10.0
2. epsresd, residual on increment, default=1.0
3. epsresg, residual on constraint equations, default=1E-7

max_iterations 1. Number of maximum iterations within a time step.
animation Included if animation file is requested

1. Animation file name incl. relative path. E.g.
./animation/animation1.dat

visualization Included if simulation visualization file is requested
1. Visualization file name incl. relative path. E.g.
./visualization/example.hdf5;
(optional: 2. time at which the visualization output starts [s])
(optional: 3. time at which the visualization output ends [s])

logfile Included if a logfile is requested internally from the htc
command file.
1. Logfile name incl. relative path. E.g. ./logfiles/log1.txt

log_deltat If specified, iteration statitics is written to the log(file) every
log_deltat seconds. Otherwise a log line is printed every time
step.
1. Time between output to logfile [s], e.g. 2.5

- 17

8.2 Sub command block - newmark

Obl. Command name Explanation
beta 1. beta value (default=0.27)
gamma 1. gamma value (default=0.51)

* deltat 1. time increment [s]
symmetry 1. Solver assumption regarding mass, damping and stiffness

matrices (1=symmetric (default), 2=assymetric (recommended
for offshore structures). When hydrodynamic loading is applyed
this parameter will automatically change to 2.)

18 -

9 Structural input

9.1 Main command block - new_htc_structure

Obl. Command name Explanation
beam_output_file_name Write the beam properties for all bodies.

1. File name including relative path to file where the beam data
are listed (output) (example ./info/beam.dat)

body_output_file_name Write the initial conditions and inertia matrix for all bodies.
1. File name including relative path to file where the body data
are listed (output) (example ./info/body.dat)

struct_inertia_output_file_name For all bodies, write the inertia matrix, with respect to the center
of gravity, in global and local coordinates.
1. File name including relative path to file where the global
inertia information data are listed (output) (example
./info/inertia.dat)

body_matrix_output Write the assembled stiffness, damping and mass matrices for
all bodies.
1. Folder name where the bodies structural matrices are listed
(example ./info/body).

element_matrix_output Write the elements stiffness, damping and mass matrices.
1. File name including relative path to file where the elements
structural matrices are listed (example ./info/element.dat).

constraint_output_file_name Write the initial conditions of the constraints in global
coordinates.
1. File name including relative path to file where the constraint
data are listed (output). (example ./info/constraint.dat)

body_eigenanalysis_file_name Do the eigenanalysis for all bodies (not recommended). Write the
damped frequency, natural frequency and logarithmic decrement.

structure_eigenanalysis_file_name Do the eigenanalysis for the entire structure. Write the
damped frequency, natural frequency, logarithmic decrement and
animation of the mode shapes.
1. File name including relative path to file where the results of
an complete turbine eigenanalysis are listed (example
./info/eigen_all.dat). Animation files are placed in the same
directory of the file name.
2. Optional parameter determining if structural damping is
included in the eigenvalue calculation or not. (0=damping not
included, most robust method, 1=damping included default)

system_eigenanalysis Do the eigenanalysis for the entire structure, including external
systems attached, eg. mooring lines. Constraint equations are
also fully included in the analysis. Write the damped frequency,
natural frequency, logarithmic decrement and animation of the
mode shapes.
1. File name including relative path to file where the results of
an complete turbine eigenanalysis are listed (example
./info/eigen_all.dat). Animation files are placed in the same
directory of the file name.
2. (optional) Parameter determining if structural damping is
included in the eigenvalue calculation or not. (0=damping not
included, most robust method, 1=damping included default)
3. (optional) Number of modes outputted.

- 19

4. (optional) Time for when the eigenanalysis is carried out. Eg.
after a settling of a floating system.

9.2 Sub command block - main_body

This block can be repeated as many times as needed. For every block a new body is added
to the structure. A main body is a collection of normal bodies which are grouped together for
bookkeeping purposes related to input output. When a main body consist of several bodies the
spacing the name of each body inherits the name of the master body and is given an additional
name of ’_#’, where # is the body number. An example could be a main body called ’blade1’
which consist of two bodies. These are then called ’blade1_1’ and ’blade1_2’ internally in the
code. The internal names are only important if (output) commands are used that refers to the
specific body name and not the main body name.

Obl. Command name Explanation
* name 1. Main_body identification name (must be unique)
* type 1. Element type used (options are: timoschenko)
* nbodies 1. Number of bodies the main_body is divided into (especially

used for blades when large deformation effects needs attention).
Equal number of elements on each body, eventually extra
elements are placed on the first body.

* node_distribution 1. Distribution method of nodes and elements. Options are:
“uniform” nnodes. Where uniform ensures equal element length
and nnodes are the node numbers.
“c2_def”, which ensures a node a every station defined with the
sub command block c2_def.

damping Original damping model that can only be used when the shear
center location equals the elastic center to ensure a positive
definite damping matrix. It is recommended to use the
damping_posdef command instead. Rayleigh damping
parameters containing factors that are multiplied to the mass
and stiffness matrix respectfully.
! Pay attention, the mass proportional damping is not
contributing when a mbdy consist of multiple bodies !
1. "G

2. "H

3. "I

4. G
5. H
6. I

NOTE: This damping model cannot be used with the Fully
Populated Matrix (“FPM 1”, see below) beam element!

damping_posdef Rayleigh damping parameters containing factors. "G , "H , "I

are constants multiplied on the mass matrix diagonal and
inserted in the damping matrix. G , H , I are factors
multiplied on the moment of inertia �G , �H , �I in the stiffness
matrix and inserted in the damping matrix. Parameters are in
size approximately the same as the parameters used with the
original damping model written above.
! Pay attention, the contribution from mass proportional
damping is limited when a mbdy consist of multiple bodies !
1. "G

2. "H

20 -

3. "I

4. G
5. H
6. I

NOTE: This damping model cannot be used with the Fully
Populated Matrix (“FPM 1”, see below) beam element!

damping_aniso Mixed mass/stiffness proportional and stiffness proportional
damping parameters containing factors. [<G , [<H , [<C are
constants multiplied on a mixed mass/stiffness matrix diagonal
and inserted in the damping matrix. [BG , [BH , [BC are factors
multiplied on the moment of inertia �G , �H , �I in the stiffness
matrix and inserted in the damping matrix.
! Pay attention, the mass proportional damping is not
contributing when a mbdy consist of multiple bodies !
Damping_aniso will give a similar damping to damping_posdef
if 1) only stiffness proportional damping is used (first three
coefficients in both models are zero) and 2) the 4th and 5th
parameters are swapped (=BH = G and =BG = H)
! See the command for the corrected version of damping_aniso
below !
1. [<G
2. [<H
3. [<C
4. [BG
5. [BH
6. [BC

damping_aniso_v2 Identical usage as damping_aniso, but a minor bug in the
torsional damping computation has been fixed.

damping_file Pre-generated damping read from file - the file can be generated
by the metod described in Section C.
1. File name.

copy_main_body Command that can be used if properties from a previously
defined body shall be copied. The name command still have to
be present, all other data are overwritten.
1. Main_body identification name of main_body that is copied.

gravity 1. Specification of gravity (directed towards zG).
NB! this gravity command only affects the present main body.
Default=9.81 [m/s2]

concentrated_mass Concentrated masses and inertias can be attached to the
structure. The offset distance from the node to the center of
mass is given in the body’s coordinates system. The moments
and products of inertia is given around the center of mass in the
body’s coordinates system.
1. Node number to which the inertia is attached.
2. Offset distance x-direction [m]
3. Offset distance y-direction [m]
4. Offset distance z-direction [m]
5. Mass [kg]
6. �GG [kg m2]
7. �HH [kg m2]
8. �II [kg m2]
9. �GH [kg m2] – optional
10. �GI [kg m2] – optional

- 21

11. �HI [kg m2] – optional
external_bladedata_dll Blade structural data are found in an external encrypted dll. If

this command is present only these other command lines need
to be present (name, type, nbodies, node_distribution and a
damping command line).
1. Company name (that has been granted a password, eg. dtu).
2. Password for opening this specific dll, eg. test1234
3. path and filename for the dll. eg. ./data/encr_blade_data.dll

9.2.1 Sub sub command block – timoschenko_input

Block containing information about location of the file containing distributed beam property
data and the data set requested.

Obl. Command name Explanation
* filename 1. Filename incl. relative path to file where the distributed beam

input data are listed (example ./data/hawc2_st.dat)
FPM Logic command for Fully Populated Matrix beam element:

1. Write “1” to read a structural input file based on the fully
populated stiffness matrix. Write “0” for the original beam
model

If the command is neglected, HAWC2 will assume that the
structural input file is based on the original beam model

mass_scale_method Specify how to scale total mass of a main body.
1. 0 or 1 (default)
For method 1 the mass is adjusted for the entire main body such
that the static moment around the first node is the same as when
integrating the varying mass properties in the st file. Method 0
means no scaling is applied. See paragraph below for more
information. Method 1 is the default option if this command is
not present.

Note on mass scaling method: Scaling method 1 has historically been the default scaling
method in HAWC2 to assure that, for example, the edge-wise gravity loads of the blade are
consistent with the st input. In the st input file the mass varies linearly between the data points
while the elements of a body (following the discretization from the c2_def section) have a
constant mass. Depending on the c2_def discretization and the st file mass distribution HAWC2
will have to choose to either keep the total integrated mass or the static mass moment consistent
between them.

There is a simple examplewith three differentmass distributions available at https://gitlab.
windenergy.dtu.dk/HAWC2Public/examples/-/tree/master/hawc2/structure/static_

mass_moment that demonstrates how the mass scaling method behaves.

22 -

https://gitlab.windenergy.dtu.dk/HAWC2Public/examples/-/tree/master/hawc2/structure/static_mass_moment
https://gitlab.windenergy.dtu.dk/HAWC2Public/examples/-/tree/master/hawc2/structure/static_mass_moment
https://gitlab.windenergy.dtu.dk/HAWC2Public/examples/-/tree/master/hawc2/structure/static_mass_moment

Mass method scaling method 1 can be expressed mathematically as follows:

<4864= =
2
√
<2
G + <2

H + <2
I

!

√
!2
G + !2

H + !2
I

, where

<G =

∫ !

0
AG< 3A , <H =

∫ !

0
AH< 3A , <I =

∫ !

0
AI< 3A

AG =

√
H2 + I2 , AH =

√
G2 + I2 , AI =

√
G2 + H2

!G =

√
?2
H + ?2

I , !H =
√
?2
G + ?2

I , !I =
√
?2
G + ?2

H

?G , ?H , ?I are element mid point coordinates

! is element length, m is mass per unit length

9.2.2 Sub sub command block – c2_def

In this command block the definition of the centerline of the main_body is described (position
of the half chord, when the main_body is a blade). The input data given with the sec commands
below is used to define a continous differentiable line in space using akima spline functions.
This centerline is used as basis for local coordinate system definitions for sections along the
structure. If two input sections are given it is assumed that all points are on a straight line. If
three input sections are given points are assumed to be on the line consisted of two straight
lines. If four or more input sections are given points are assumed to be on an akima interpolated
spline. This spline will include a straight line if a minimum of three points on this line is defined.

Figure 2: Illustration of c2_def coordinate system related to main body coordinates. The blade
z-coordinate has to be positive from root towards the tip.

- 23

Obl. Command name Explanation
* nsec Must be the present before a “sec” command.

1. Number of section commands given below
* sec Command that must be repeated “nsec” times. Minimum 4

times.
1. Number
2. x-pos [m]
3. y-pos [m]
4. z-pos [m]
5. \I [deg]. Angle between local x-axis and main_body x-axis
in the main_body x-y coordinate plane. For a straight blade this
angle is the aerodynamic twist. Note that the sign is positive
around the z-axis, which is opposite to traditional notation for
etc. a pitch angle.

Here is an illustration of how a blade can be defined with respect to discretisation of bodies,
nodes and elements.

Here is an example of this written into the htc-input file.

1 begin main_body;

2 name blade1 ;

3 type timoschenko ;

4 nbodies 6 ;

5 node_distribution c2_def;

6 damping_posdef 1.17e-4 5.77e-5 6.6e-6 6.6e-4 5.2e-4 6.5e-4 ;

7 begin timoschenko_input ;

8 filename ./data/st_file.txt ;

9 FPM 0; (optional, when parameter is 0)

10 set 1 1 ; set subset

11 end timoschenko_input;

12 begin c2_def; Definition of centerline (main_body coordinates)

13 nsec 19 ;

14 sec 1 -0.0000 0.0000 0.000 0.000 ;

15 sec 2 -0.0041 0.0010 3.278 -13.590 ;

16 sec 3 -0.1048 0.0250 6.556 -13.568 ;

17 sec 4 -0.2582 0.0492 9.833 -13.564 ;

18 sec 5 -0.4694 0.0587 13.111 -13.546 ;

19 sec 6 -0.5689 0.0957 16.389 -11.406 ;

20 sec 7 -0.5455 0.0883 19.667 -10.145 ;

21 sec 8 -0.5246 0.0732 22.944 -9.043 ;

22 sec 9 -0.4362 0.0669 26.222 -7.843 ;

23 sec 10 -0.4644 0.0554 29.500 -6.589 ;

24 sec 11 -0.4358 0.0449 32.778 -5.447 ;

25 sec 12 -0.4859 0.0347 36.056 -4.234 ;

26 sec 13 -0.3759 0.0265 39.333 -3.545 ;

27 sec 14 -0.3453 0.0130 42.611 -2.223 ;

28 sec 15 -0.3156 0.0084 45.889 -1.553 ;

29 sec 16 -0.2791 0.0044 49.167 -0.934 ;

30 sec 17 -0.2675 0.0017 52.444 -0.454 ;

24 -

31 sec 18 -0.1785 0.0003 55.722 -0.121 ;

32 sec 19 -0.1213 0.0000 59.000 -0.000 ;

33 end c2_def ;

34 end main_body;

Format definition of file with distributed beam properties (st file) The format of this file,
which in the old HAWC code was known as the hawc_st file, is changed slightly for the HAWC2
new_htc_structure format. The file is a text file in which the structural parameters are organized
into main sets and sub sets. The main set is located after a “#” sign followed by the main set
number. Within a main there can be as many subsets as desired. They are located after a “$”
sign followed by the local set number. The next sign of the local set number is the number of
lines in the following rows that belong to this sub set.

There are two types st_file:

• The st_file for the original HAWC2 beam element. Input parameters for this model are
reported in Table 1 HAWC2 original beam element structural data.

• The st_file for the new anisotropic FPM beam element. Input parameters are reported in
Table 2 New HAWC2 anisotropic beam element structural data.

Please note! The first column in the datasets, the curved-length distance from the main body’s
first node, is normalized by HAWC2 using the curved length defined by the x, y and z coordinates
given in the c2_def block in the htc file. In other words, if your curved length in the st file goes
from 0 to 100 but the curved length defined by the c2_def coordinates has a max curved length
of 50, then the st-file curved length will be normalized such that it goes from 0 to 50 and
a warning will be printed in the log file. The curved length in the st file should start from
0. We recommend having consistent curved lengths in the st and htc files; consider using the
beam_output_file_name to verify the lengths. Formore information on howHAWC2 handles
differing node locations in the htc file and st file, please see the structural module in the HAWC2
training course.

In general all centers are given according to the �1/2 center location and all other are related
to the principal bending axes. For the anisotropic beam element, centers are given according
to the �1/2 center location, but the cross sectional stiffness matrix is given at the elastic center
rotated along the principal bending axes.

Figure 3: Illustration of structural properties that in the input files are related to the c2 coordinate
system.

A small explanation about radius of gyration (also called radius of inertia) and the area moment
of inertia (related to stiffness) is shown below in N.5 and N.11

An example of a st original beam formulation input file can be seen on the next page. The most
important features to be aware of are colored with red.

- 25

Table 3: HAWC2 original beam element structural data

Column Parameter
1 r, curved length distance from main_body node 1 [m]. HAWC2

normalizes this by the curved length defined in c2_def.
2 m, mass per unit length [kg/m]
3 G<, G22-coordinate from �1/2 to mass center [m]
4 H<, H22-coordinate from �1/2 to mass center [m]
5 A8G , radius of gyration related to elastic center. Corresponds to

rotation about principal bending G4 axis [m]
6 A8H , radius of gyration related to elastic center. Corresponds to

rotation about principal bending H4 axis [m]
7 GB , G22-coordinate from �1/2 to shear center [m]. The shear

center is the point where external forces only contributes to pure
bending and no torsion.

8 HB , H22-coordinate from �1/2 to shear center [m]. The shear
center is the point where external forces only contributes to pure
bending and no torsion.

9 E, modulus of elasticity [#/<2]
10 G, shear modulus of elasticity [#/<2]
11 �G , area moment of inertia with respect to principal bending G4

axis [<4]. This is the principal bending axis most parallel to the
G22 axis

12 �H , area moment of inertia with respect to principal bending ye
axis [<4]

13 K, torsional stiffness constant with respect to ze axis at the shear
center [<4/A03]. For a circular section only this is identical to
the polar moment of inertia.

14 :G shear factor for force in principal bending G4 direction [-]
15 :H , shear factor for force in principal bending ye direction [-]
16 A, cross sectional area [<2]
17 \I , structural pitch about I22 axis. This is the angle between the

G22 -axis defined with the c2_def command and the main
principal bending axis G4. [deg]

18 G4, G22-coordinate from �1/2 to center of elasticity [m]. The
elastic center is the point where radial force (in the z-direction)
does not contribute to bending around the x or y directions.

19 H4, H22-coordinate from �1/2 to center of elasticity [m]. The
elastic center is the point where radial force (in the z-direction)
does not contribute to bending around the x or y directions.

26 -

- 27

28
-

Table 4: New HAWC2 anisotropic beam element structural data

Column
1 r, curved length distance from main_body node 1 [m]. HAWC2

normalizes this by the curved length defined in c2_def.
2 m, mass per unit length [kg/m]
3 G<, G22-coordinate from �1/2 to mass center [m]
4 H<, H22-coordinate from �1/2 to mass center [m]
5 A8G , radius of gyration related to elastic center. Corresponds to

rotation about principal bending G4 axis [m]
6 A8H , radius of gyration related to elastic center. Corresponds to

rotation about principal bending H4 axis [m]
7 \I , structural pitch about I22 axis [deg]. This is the angle

between the G22 -axis defined with the c2_def command and the
main principal bending axis G4.

8 G4, G22-coordinate from �1/2 to center of elasticity [m]. The
elastic center is the point where radial force (in the z-direction)
does not contribute to bending around the x or y directions.

9 H4, H22-coordinate from �1/2 to center of elasticity [m]. The
elastic center is the point where radial force (in the z-direction)
does not contribute to bending around the x or y directions.

10 11, element 1,1 of the Cross sectional stiffness matrix [#].
REMEMBER: the cross sectional stiffness matrix is given at the
elastic center rotated along the principal bending axes.

11 12, element 1,2 of the Cross sectional stiffness matrix [#].
12 13, element 1,3 of the Cross sectional stiffness matrix [#].
13 14, element 1,4 of the Cross sectional stiffness matrix [#<].
14 15, element 1,5 of the Cross sectional stiffness matrix [#<].
15 16, element 1,6 of the Cross sectional stiffness matrix [#<].
16 22, element 2,2 of the Cross sectional stiffness matrix [#].
17 23, element 2,3 of the Cross sectional stiffness matrix [#].
18 24, element 2,4 of the Cross sectional stiffness matrix [#<].
19 25, element 2,5 of the Cross sectional stiffness matrix [#<].
20 26, element 2,6 of the Cross sectional stiffness matrix [#<].
21 33, element 3,3 of the Cross sectional stiffness matrix [#].
22 34, element 3,4 of the Cross sectional stiffness matrix [#<].
23 35, element 3,5 of the Cross sectional stiffness matrix [#<].
24 36, element 3,6 of the Cross sectional stiffness matrix [#<].
25 44, element 4,4 of the Cross sectional stiffness matrix [#<2].
26 45, element 4,5 of the Cross sectional stiffness matrix [#<2].
27 46, element 4,6 of the Cross sectional stiffness matrix [#<2].
28 55, element 5,5 of the Cross sectional stiffness matrix [#<2].
29 56, element 5,6 of the Cross sectional stiffness matrix [#<2].
30 66, element 6,6 of the Cross sectional stiffness matrix [#<2].

An example of a st anisotropic beam formulation input file can be seen on the next page.

- 29

30
-

9.2.3 Sub sub command - damping_distributed

In this command block, Rayleigh damping parameters can be defined as function of blade
length, hence damping parameters can be different at root of tip of a blade.

Obl. Command name Explanation
* nsec Number of input lines
* sec This command must be repeated nsec times.

1. r/R. Non-dim distance from node 1 to node N.
2. :G Stiffness proportional damping around x
3. :H Stiffness proportional damping around y
4. :I Stiffness proportional damping around z

9.2.4 Sub sub command – damping_posdef_distributed

In this command block, Rayleigh damping parameters can be defined as function of blade
length, hence damping parameters can be different at root of tip of a blade.

Obl. Command name Explanation
* nsec Number of input lines
* sec This command must be repeated nsec times.

1. r/R. Non-dim distance from node 1 to node N.
2. :G Stiffness proportional damping around x
3. :H Stiffness proportional damping around y
4. :I Stiffness proportional damping around z

9.2.5 Sub sub command – visualization_profile

This command block is used together with the command name visualization in the main
command block simulation. Default profiles are:

- Blade: An aerodynamic profile where thickness <95%, otherwise a cylinder. Dimensions as
specified in the aerodynamic blade layout file.

- Other bodies: Cylinder. The diameter is calculated from the mass and inertia specified in the
structural data

Obl. Command name Explanation
* type Profile type. (options are: “cylinder”, “cube” and “blade”)
* nsec Number of visualization sections
* sec This command must be repeated nsec times.

1. Distance from root [m or % or any other unit of choice
(scaled relative to the largest number)]
2. Diameter (cylinder), width (cube), chord (blade) [m]
3. (not needed for cylinder), height (cube) [m], thickness (blade)
[%]

9.3 Sub command - orientation

In this command block the orientation (regarding position and rotation) of every main_body
are specified.

9.3.1 Sub sub command - base

The orientation of a main_body to which all other bodies are linked – directly or indirectly.

- 31

Obl. Command name Explanation
* mbdy 1. Main_body name that is declared to be the base of all

bodies (normally the tower or foundation)
(old command name body
still usable)

* inipos Initial position in global coordinates.
1. x-pos [m]
2. y-pos [m]
3. z-pos [m]

♣ mbdy_eulerang Command that can be repeated as many times as needed.
All following rotation are given as a sequence of euler
angle rotations. All angle can be filled in (rotation order
x,y,z), but it is recommended only to give a value different
from zero on one of the angles and reuse the command if
several rotations are needed.
1. \G [deg]
2. \H [deg]

(old command name
body_eulerang still usable)

3. \I [deg]

♣ mbdy_eulerpar The rotation is given as euler parameters (quaternions)
directly (global coo).
1. A0
2. A1
3. A2

(old command name
body_eulerpar still usable)

4. A3

♣ mbdy_axisangle Command that can be repeated as many times as needed.
A version of the euler parameters where the input is a
rotation vector and the rotation angle of this vector.
1. x-value
2. y-value
3. z-value

(old command name
body_axisangle still usable)

4. angle [deg]

mbdy_ini_rotvec_d1 Initial rotation velocity of main body and all subsequent
attached bodies. A rotation vector is set up and the size
of vector (the rotational speed) is given. The coordinate
system used is main_body coo.
1. x-value
2. y-value
3. z-value
4. Vector size (rotational speed [rad/s])

♣ One of these commands must be present.

9.3.2 Sub sub command - relative

This command block can be repeated as many times as needed. However the orientation of
every main_body should be described.

Obl. Command name Explanation
* mbdy1 1. Main_body name to which the next main_body is

attached.

32 -

(old command name body1
still usable)

2. Node number of body1 that is used for connection.
(“last” can be specified which ensures that the last node
on the main_body is used, and “0” (zero) refers to the
origin of the main body coordinate system).

* mbdy2 1. Main_body name of the main_body that is positioned
in space by the relative command.

(old command name body2
still usable)

2. Node number of body2 that is used for connection.
(“last” can be specified which ensures that the last node
on the main_body is used, and “0” (zero) refers to the
origin of the main body coordinate system).

♣ mbdy2_eulerang Command that can be repeated as many times as needed.
All following rotation are given as a sequence of euler
angle rotations. All angle can be filled in (rotation order
x,y,z), but it is recommended only to give a value different
from zero on one of the angles and reuse the command
if several rotations are needed. Until a rotation command
is specified body2 has same coo. as body1. Rotations are
performed in the present body2 coo. system.
1. \G [deg]
2. \H [deg]
3. \I [deg]

(old command name
body2_eulerang still usable)

♣ mbdy2_eulerpar The rotation is given as euler parameters (quaternions)
directly (global coo).
1. A0
2. A1
3. A2

(old command name
body2_eulerpar still usable)

4. A3

♣ mbdy2_axisangle Command that can be repeated as many times as needed.
A version of the euler parameters where the input is a
rotation vector and the rotation angle of this vector. Until a
rotation command is specified main_body2 has same coo.
as main_body1. Rotations are performed in the present
main_body2 coo. system.
1. x-value
2. y-value
3. z-value

(old command name
body2_axisangle still
usable)

4. angle [deg]

mbdy2_ini_rotvec_d1 Initial rotation velocity of main body and all subsequent
attached bodies. A rotation vector is set up and the size
of vector (the rotational speed) is given. The coordinate
system used is main_body2 coo.
1. x-value
2. y-value
3. z-value

(old command name
body2_ini_rotvec_d1 still
usable)

4. Vector size (rotational speed [rad/s])

- 33

relpos Vector from coupling node of mbdy 1 to coupling node
of mbdy 2 in mbdy1 coo system in case a certain distance
between these nodes is required. (Default for overlapping
coupling nodes, this vector is (0,0,0))
1. x-value
2. y-value
3. z-value

9.4 Sub command - constraint

In this block constraints between the main_bodies and to the global coordinate system are
defined.

9.4.1 Sub sub command – fix0

This constraint fix node number 1 of a given main_body to ground.

Obl. Command name Explanation
* mbdy Name of main body that is fixed to ground at node 1

(old command name body
still usable)
disable_at Time to which constraint can be disabled

1. C0
enable_at Time to which constraint can be enabled

1. C0

9.4.2 Sub sub command – fix1

This constraint fix a given node on one main_body to another main_body’s node.

Obl. Command name Explanation
* mbdy1 1. Main_body name to which the next main_body is fixed.

2. Node number of main_body1 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used, and “0” (zero) refers
to the origin of the main body coordinate system).

(old command name body1
still usable)

* mbdy2 1. Main_body name of the main_body that is fixed to
main_body1.
2. Node number of main_body2 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used, and “0” (zero) refers
to the origin of the main body coordinate system).

(old command name body2
still usable)
disable_at Time to which constraint can be disabled

1. C0
enable_at Time to which constraint can be enabled

1. C0

34 -

9.4.3 Sub sub command – fix2

This constraint fix a node 1 on a main_body to ground in x,y,z direction. The direction that is
free or fixed is optional.

Obl. Command name Explanation
* mbdy 1. Main_body name to which node 1 is fixed.

(old command name body
still usable)

* dof Direction in global coo that is fixed in translation
1. x-direction (0=free, 1=fixed)
2. y-direction (0=free, 1=fixed)
3. z-direction (0=free, 1=fixed)

9.4.4 Sub sub command – fix3

This constraint fix a node to ground in CG ,CH ,CI rotation direction. The rotation direction that is
free or fixed is optional.

Obl. Command name Explanation
* mbdy 1. Main_body name to which node 1 is fixed.

2. Node number
(old command name body
still usable)

* dof Direction in global coo that is fixed in rotation
1. tx-rot.direction (0=free, 1=fixed)
2. ty-rot.direction (0=free, 1=fixed)
3. tz-rot.direction (0=free, 1=fixed)

9.4.5 Sub sub command – fix4

Constraint that locks a node on a body to another node in translation but not rotation with a
pre-stress feature. The two nodes will start at the defined positions to begin with but narrow the
distance until fully attached at time T.

- 35

Obl. Command name Explanation
* mbdy1 1. Main_body name to which the next main_body is fixed.

2. Node number of main_body1 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used, and “0” (zero) refers
to the origin of the main body coordinate system).

(old command name body1
still usable)

* mbdy2 1. Main_body name of the main_body that is fixed to
body1.
2. Node number of main_body2 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used, and “0” (zero) refers
to the origin of the main body coordinate system).

(old command name body2
still usable)
time 1. Time for the pre-stress process. Default=2sec
disable_at Time to which constraint can be disabled

1. C0
enable_at Time to which constraint can be enabled

1. C0

36 -

9.4.6 Sub sub command – bearing1

Constraint with properties as a bearing without friction. A sensor with same identification name
as the constraint is set up for output purpose.

Obl. Command name Explanation
* name 1. Identification name
* mbdy1 1. Main_body name to which the next main_body is fixed

with bearing1 properties.
2. Node number of main_body1 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used, and “0” (zero) refers
to the origin of the main body coordinate system).

(old command name body1
still usable)

* mbdy2 1. Main_body name of the main_body that is fixed to
body1 with bearing1 properties.
2. Node number of main_body2 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used, and “0” (zero) refers
to the origin of the main body coordinate system).

(old command name body2
still usable)

* bearing_vector Vector to which the free rotation is possible. The direction
of this vector also defines the coo towhich the output angle
is defined.
1. Coo. system used for vector definition
(0=global,1=mbdy1,2=mbdy2)
2. x-axis
3. y-axis
4. z-axis

sensor_offset_deg User defined initial bearing angle in degrees. Used for
sensor (output).
1. \0 [deg]

sensor_offset_rad User defined initial bearing angle in radians. Used for
sensor (output).
1. \0 [rad]

disable_at Time to which constraint can be disabled
1. C0

enable_at Time to which constraint can be enabled
1. C0

- 37

9.4.7 Sub sub command – bearing2

This constraint allows a rotation where the angle is directly specified by an external dll action
command.

Obl. Command name Explanation
* name 1. Identification name
* mbdy1 1. Main_body name to which the next main_body is fixed

with bearing2 properties.
2. Node number of main_body1 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used, and “0” (zero) refers
to the origin of the main body coordinate system).

(old command name body1
still usable)

* mbdy2 1. Main_body name of the main_body that is fixed to
main_body1 with bearing1 properties.
2. Node number of main_body2 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used, and “0” (zero) refers
to the origin of the main body coordinate system).

(old command name body2
still usable)

* bearing_vector Vector to which the rotation occur. The direction of this
vector also defines the coo to which the output angle is
defined.
1. Coo. system used for vector definition
(0=global,1=mbdy1, 2=mbdy2)
2. x-axis
3. y-axis
4. z-axis

sensor_offset_deg User defined initial bearing angle in degrees. Used for
sensor (output) and control (input).
1. \0 [deg]

sensor_offset_rad User defined initial bearing angle in radians. Used for
sensor (output) and control (input).
1. \0 [rad]

disable_at Time to which constraint can be disabled
1. C0

enable_at Time to which constraint can be enabled
1. C0

38 -

9.4.8 Sub sub command – bearing3

This constraint allows a rotation where the angle velocity is kept constant throughout the
simulation.

Obl. Command name Explanation
* name 1. Identification name
* mbdy1 1. Main_body name to which the next main_body is fixed

with bearing3 properties.
2. Node number of main_body1 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used, and “0” (zero) refers
to the origin of the main body coordinate system).

(old command name body1
still usable)

* mbdy2 1. Main_body name of the main_body that is fixed to
body1 with bearing3 properties.
2. Node number of main_body2 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used, and “0” (zero) refers
to the origin of the main body coordinate system).

(old command name body2
still usable)

* bearing_vector Vector to which the rotation occur. The direction of this
vector also defines the coo to which the output angle is
defined.
1. Coo. system used for vector definition
(0=global,1=body1,2=body2)
2. x-axis
3. y-axis
4. z-axis

* omegas 1. Rotational speed [rad/sec]

9.4.9 Sub sub command – bearing4

This constraint is a cardan shaft constraint. Locked in relative translation. Locked in rotation
around one vector and allows rotation about the two other directions.

- 39

Obl. Command name Explanation
* name 1. Identification name
* mbdy1 1. Main_body name to which the next main_body is fixed

with bearing3 properties.
2. Node number of main_body1 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used, and “0” (zero) refers
to the origin of the main body coordinate system).

(old command name body1
still usable)

* mbdy2 1. Main_body name of the main_body that is fixed to
body1 with bearing3 properties.
2. Node number of main_body2 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used, and “0” (zero) refers
to the origin of the main body coordinate system).

(old command name body2
still usable)

* bearing_vector Vector to which the rotation is locked. The rotation
angle and velocity can be outputted around the two
perpendicular directions.
1. Coo. system used for vector definition
(0=global,1=mbdy1, 2=mbdy2)
2. x-axis
3. y-axis
4. z-axis

9.4.10 Sub sub command – bearing5

This constraint is a spherical constraint. Locked in relative translation. Free in rotation around
all three axis, but only sensor on the main rotation direction.

40 -

Obl. Command name Explanation
* name 1. Identification name
* mbdy1 1. Main_body name to which the next main_body is fixed

with bearing3 properties.
2. Node number of main_body1 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used, and “0” (zero) refers
to the origin of the main body coordinate system).

(old command name body1
still usable)

* mbdy2 1. Main_body name of the main_body that is fixed to
body1 with bearing3 properties.
2. Node number of main_body2 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used, and “0” (zero) refers
to the origin of the main body coordinate system).

(old command name body2
still usable)

* bearing_vector Vector to which the rotation is locked. The rotation
angle and velocity can be outputted around the two
perpendicular directions.
1. Coo. system used for vector definition
(0=global,1=mbdy1, 2=mbdy2)
2. x-axis
3. y-axis
4. z-axis

- 41

10 DLL control

This block contains the possible Dynamic Link Library formats accessible for the user. The
DLL’s are mainly used to control the turbine speed and pitch, but since the DLL format is very
general, other use is possible too e.g. external loading of the turbine. Since the HAWC2 core
has no information about external stiffness or inertia we have experienced some issues with
the solver if the DLL includes high stiffness terms or especially large inertia terms. The new
type2_dll interface is slightly more stable related to the solver than the hawc_dll interface.

10.1 Main command block – dll

There are two DLL mechanisms available: hawc_dll and type2_dll. Both have two different
interfaces (as documented in more detailed in the following sections 10.3 and 10.4) and have
one other important distinction: a hawc_dll is updated in each aero-structure iteration, i.e.
typically multiple times per time step while the type2_dll is only updated once per time step.

10.2 Important note about DLL file names

For both DLL interfaces the user needs to refer to the location of the specific DLL in use. Since
version 12.9 HAWC2 is available for 3 different architectures (Windows 32-bit, Windows 64-bit
and Linux 64-bit). To facilitate easy use of the same htc file across the different architectures,
the intention is that with a single htc input file a user should be able to run on win32, win64
and linux without modifications. To this end, HAWC2 is using the following strategy:

• Determine what file name extension to use:
– Win32: .dll
– Win64: _64.dll (recommended), .dll
– Linux: .so

• Find the correct path of the dll:
– Absolute path (if the absolute path is specified)
– Relative path relative to:

∗ Current working directory (cwd)
∗ The location of the HAWC2 executable

• On Linux, paths and file names are case sensitive (in contrast to Windows). Functionality
to mimic the Windows behaviour on Linux has therefore been added. This functionality
tries the following:

– Load the exact specified filename (Note the automatic convertion to lower case and
the exceptions described below)

– Find the first filename that case-insentively matches the specified filename. This is
done usingfind /my/dir -maxdepth 1 -type f -ipath '*my_dll_name.so'.
Note: "first" may be arbitrary. Hence, avoid to have multiple files with the same name
except for their case (e.g. my_hawc2_dll.so and My_HAWC2_dll.so) in the same
folder.
Note: With thousands of parallel simulations this behaviour may be problematic for
the file system. Every use of find-command is therefore printed to the log file and
in case the usage can be avoided by specifying the correct case-sensitive filename a
warning is printed too.

• All input in the htc file(s) are converted to lower case with the following exceptions:
– single-quoted strings, e.g. 'dont_CHANGE_case.dll'

42 -

– htc lines starting with filename

– htc lines starting with continue_in_file

• Note that the log file will always report which files have been loaded so in case of doubt
inspect that.

Each DLL needs to be compiled for each of the three different platforms independently, but
with this functionality, the same input htc file, e.g.

1 ...

2 begin dll;

3 begin type2_dll;

4 name 'MyDLL';

5 filename ./my_folder/MyDLL.dll ;

6 ...

7 end type2_dll;

8 end dll;

9 ...

will load and use the correct dll on all platforms if the three files, MyDLL.dll (win32
compilation), MyDLL_64.dll (win64 compilation) and MyDLL.so (linux compilation) is put in
my_folder.

10.3 Sub command block – hawc_dll

In the hawc_dll format a subroutine within an externally written DLL is setup. In this
subroutine call two one-dimensional arrays are transferred between the HAWC2 core and
the DLL procedure. The first contains data going from the HAWC2 core to the DLL and the
other contains data going from the DLL to the core. It is very important to notice that the data
is transferred between HAWC2 and the DLL in every time step and every iteration. The user
should handle the iteration inside the DLL.

Two more subroutines are called if they are present inside the dll file:

The first is an initialisation call including a text string written in the init_string in the commands
below. This could be the name of a file holding local input parameters to the data transfer
subroutine. This call is only performed once. The name of this subroutine is the same name
as the data transfer subroutine defined with the command dll_subroutine below with the extra
name ’_init’, hence is the data transfer subroutine is called ’test’, the initialisation subroutine
will be ’test_init’.

The second subroutine is a message exchange subroutine, where messages written in the DLL
can be send to the HAWC2 core for logfile writing. The name of this subroutine is the same
name as the data transfer subroutine defined with the command dll_subroutine below with the
extra name ’_message’, hence is the data transfer subroutine is called ’test’, the initialisation
subroutine will be ’test_message’.

The command block can be repeated as many times as desired. Reference number to DLL is
same order as listed, starting with number 1. However it is recommended to refer the DLL using
the name feature which in many cases can avoid confusion.

- 43

Obl. Command name Explanation
name 1. Reference name of this DLL (to be used with DLL

output commands)
* filename 1. Filename incl. relative path of the DLL

(example ./DLL/control.dll)
* dll_subroutine 1.Nameof subroutine inDLL that is addressed (remember

to specify the name in the DLL with small letters!)
* arraysizes 1. size of array with outgoing data

2. size of array with ingoing data
deltat 1. Time between dll calls. Must correspond to the

simulation sample frequency or be a multiple of the time
step size. If deltat=0.0 or the deltat command line is
omitted the HAWC2 code calls the dll subroutine at every
time step.

init_string 1. Text string (max 256 characters) that will be transferred
to the DLL through the subroutine ’subroutine_init’.
Subroutine is the name given in in the command
dll_subroutine. No blanks can be included.

10.4 Sub command block – type2_dll

This dll interface is an updated slightly modified version of the hawc_dll interface. In the
type2_dll format a subroutine within an externally written DLL is setup. In this subroutine call
two one-dimensional arrays are transferred between the HAWC2 core and the DLL procedure.
The first contains data going from the HAWC2 core to the DLL and the other contains data
going from the DLL to the core. It is very important to notice that the data are transferred
between HAWC2 and the DLL in the first call of every time step where the out-going variables
are based on last iterated values from previous time step. The sub command output and actions
are identical for both the hawc_dll and the type2_dll interfaces.

In the dll connected with using the type2_dll interface two subroutines should be present. An
initialization routine called only once before the time simulation begins, and an update routine
called in every time step. The format in the calling of these two subroutines are identical where
two arrays of double precision is exchanged. The subroutine uses the cdecl calling convention.

Obl. Command name Explanation
name 1. Reference name of this DLL (to be used with DLL

output commands)
* filename 1. Filename incl. relative path of the DLL

(example ./DLL/control.dll)
* dll_subroutine_init 1. Name of initialization subroutine in DLL that is

addressed (remember to specify the name in the DLL
with small letters!)

* dll_subroutine_update 1. Name of subroutine in DLL that is addressed at every
time step (remember to specify the name in the DLL with
small letters!)

* arraysizes_init 1. size of array with outgoing data in the initialization call
2. size of array with ingoing data in the initialization call

* arraysizes_update 1. size of array with outgoing data in the update call
2. size of array with ingoing data in the update call

deltat 1. Time between dll calls. Must correspond to the
simulation sample frequency or be a multiple of the time
step size. If deltat=0.0 or the deltat command line is
omitted the HAWC2 code calls the dll subroutine at every
time step.

44 -

when using the type2_dll interface the values transferred to the DLL in the initialization phase
is done using a sub command block called init. The commands for this subcommand block is
identical to the output subcommand explained below, but only has the option of having the
constant output sensor available. An example is given for a small dll that is used for converting
rotational speed between high speed and low speed side of a gearbox:

1 begin dll;

2 begin type2_dll;

3 name hss_convert;

4 filename ./control/hss_convert.dll ;

5 arraysizes_init 3 1 ;

6 arraysizes_update 2 2 ;

7 begin init;

8 constant 1 2.0 ; number of used sensors - in this case only 1

9 constant 2 35.110; gearbox ratio

10 constant 3 35.110; gearbox ratio

11 end init;

12 begin output;

13 constraint bearing1 shaft_rot 2 only 2 ; rotor speed in rpm

14 constraint bearing1 shaft_rot 3 only 2 ; rotor speed in rad/s

15 end output;

16 ;

17 begin actions;

18 ; rotor speed in rpm * gear_ratio

19 ; rotor speed in rad/s * gear_ratio

20 end actions;

21 end type2_dll;

22 end dll;

10.5 Sub command block - init

In this block type2_dlls can be initialized by passing constants to specific channels.

Obl. Command name Explanation
* constant Constants passed to the dll.

1. Channel number
2. Constant value

10.6 Sub command block – output

In this block the same sensors are available as when data results are written to a file with
the main block command output, see section 17. The order of the sensors in the data array is
continuously increased as more sensors are added.

10.7 Sub command block – actions

In this command block variables inside the HAWC2 code is changed depending of the specifi-
cations. This command block can be used for the hawc_dll interface as well as the type2_dll
interface. An action commands creates a handle to the HAWC2 model to which a variable in
the input array from the DLL is linked.

!NB in the command name two separate words are present.

Obl. Command name Explanation
aero beta The flap angle beta is set for a trailing edge flap section (is

the mhhmagf stall model is used). The angle is positive
towards the pressure side of the profile. Unit is [deg]

- 45

1. Blade number
2. Flap section number

aero bem_grid_a 1. Number of points
body force_ext An external force is placed on the structure. Unit is [N].

1. body name
2. node number
3. componet (1 = �G , 2 = �H , 3 = �I)

body moment_ext An external moment is placed on the structure. Unit is
[Nm].
1. body name
2. node number
3. component (1 = "G , 2 = "H , 3 = "I)

body force_int An external force with a reaction component is placed on
the structure. Unit is [N].
1. body name for action force
2. node number
3. component (1 = �G , 2 = �H , 3 = �I)
4. body name for reaction force
5. Node number

body moment_int An external moment with a reaction component is placed
on the structure. Unit is [N].
1. body name for action moment
2. node number
3. component (1 = "G , 2 = "H , 3 = "I)
4. body name for reaction moment
5. Node number

body bearing_angle A bearing either defined through the new structure format
through bearing2 or through the old structure format
(spitch1=pitch angle for blade 1, spitch2=pitch angle for
blade 2,...). The angle limits are so far [0-90deg].
1. Bearing name

mbdy force_ext An external force is placed on the structure. Unit is [N].
1. main body name
2. node number on main body
3. component (1 = �G , 2 = �H , 3 = �I), if negative number
the force is inserted with opposite sign.
4. coordinate system (possible options are: mbdy name,
”global”, ”local”). “local” means local element coo on
the inner element (on the element indexed 1 lower that the
node number). One exception if node number =1 then the
element nr. also equals 1.

mbdy moment_ext An external moment is placed on the structure. Unit is
[Nm].
1. main body name
2. node number on main body
3. component (1 = "G , 2 = "H , 3 = "I), if negative
number the moment is inserted with opposite sign.
4. coordinate system (possible options are: mbdy
name,”global”,”local”). “local” means local element coo
on the inner element (on the element indexed 1 lower that
the node number). One exception if node number =1 then
the element nr. also equals 1.

mbdy force_int An internal force with a reaction component is placed on
the structure. Unit is [N].

46 -

1. main body name for action force
2. node number on main body
3. component (1 = �G , 2 = �H , 3 = �I), if negative number
the force is inserted with opposite sign.
4. coordinate system (possible options are: mbdy name,
”global”, ”local”). “local” means local element coo on
the inner element (on the element indexed 1 lower that the
node number). One exception if node number =1 then the
element nr. also equals 1.
5. main body name for reaction force
6. Node number on this main body

mbdy moment_int An internal force with a reaction component is placed on
the structure. Unit is [Nm].
1. main body name for action moment
2. node number on main body
3. component (1 = "G , 2 = "H , 3 = "I), if negative
number the moment is inserted with opposite sign.
4. coordinate system (possible options are: mbdy
name,”global”,”local”). “local” means local element coo
on the inner element (on the element indexed 1 lower that
the node number). One exception if node number =1 then
the element nr. also equals 1.
5. main body name for reaction moment
6. Node number on this main body

constraint bearing2
angle_deg

The angle of a bearing2 constraint is set. The angle limits
are so far [± 90 deg].
1. Bearing name

constraint bearing3
angle_deg

The angle of a bearing3 constraint is set. The angle limits
are so far [± 90 deg].
1. Bearing name

constraint bearing3 omegas The angular velocity of a bearing3 constraint is set.
1. Bearing name

body printvar Variable is just echoed on the screen. No parameters.
body ignore 1. Number of consecutive array spaces that will be ignored
mbdy printvar Variable is just echoed on the screen. No parameters.
mbdy ignore 1. Number of consecutive array spaces that will be ignored
general printvar Variable is just echoed on the screen. No parameters.
general ignore 1. Number of consecutive array spaces that will be ignored
general stop_simulation Logical switch. If value is 1 the simulation will be stopped

and output written.
wind printvar Variable is just echoed on the screen. No parameters.
wind windspeed_u External contribution to wind speed in u-direction [m/s]
wind winddir External contribution to the wind direction (turb. box is

also rotated) [deg]
quake comp 1. Degree of freedom
ext_sys control 1. Name of external system

- 47

10.8 hawc_dll format example written in FORTRAN 90

1 subroutine test(n1,array1,n2,array2)

2 implicit none
3 !DEC$ ATTRIBUTES DLLEXPORT, ALIAS:'test'::test
4 integer*4 :: n1, & ! Dummy integer value containing the array size of

array1↩→

5 n2 ! Dummy integer value containing the array size of

array2↩→

6 real*4,dimension(10) :: array1 ! fixed-length array, data from HAWC2 to DLL

7 ! � in this case with length 10

8 real*4,dimension(5) :: array2 ! fixed-length array, data from DLL to HAWC2

9 ! � in this case with length 5

10

11 ! Code is written here

12

13 end subroutine test

14

15 !---

16

17 Subroutine test_init(string256)

18 Implicit none
19 !DEC$ ATTRIBUTES DLLEXPORT, ALIAS:'test_init'::test_init
20 Character*256 :: string256

21

22 ! Code is written here

23

24 End subroutine test_init

25

26 !---

27

28 Subroutine test_message(string256)

29 Implicit none
30 !DEC$ ATTRIBUTES DLLEXPORT, ALIAS:'test_message'::test_message
31 Character*256 :: string256

32

33 ! Code is written here

34

35 End subroutine test_message

48 -

10.9 hawc_dll format example written in Delphi / Lazarus / Pascal

1 library test_dll;

2

3 type
4 array_10 = array[1..10] of single;
5 array_5 = array[1..5] of single;
6 ts = array[0..255] of char;
7

8 Procedure test(var n1:integer;var array1 : array_10;

9 var n2:integer;var array2 : array_5);stdcall;
10 // n1 is a dummy integer value containing the size of array1

11 // n2 is a dummy integer value containing the size of array2

12 begin
13 // Code is written here

14

15 end;
16

17 //--

18

19 Procedure test_init(var string256:ts; length:integer);stdcall;
20 var
21 init_str:string[255]
22 begin
23 init_str=strpas(string256);

24 // Code is written here

25 writeln(init_str);

26 end;
27

28 //--

29

30 Procedure test_message(var string256:ts; length:integer);stdcall;
31 var
32 message_str:string;
33 begin
34 // Code is written here

35 message_str:='''This is a test message';

36 strPCopy(string256,message_str);

37 end;
38

39 exports test,test_init,test_message;

40

41 begin
42 writeln('The DLL pitchservo.dll is loaded with succes');

43

44 // Initialization of variables can be performed here

45 end;
46

47 end.

- 49

10.10 hawc_dll format example written in C

1 extern "C" void __declspec(dllexport) __stdcall test(int size_of_Data_in,

2 float Data_in[], int size_of_Data_out, float Data_out[])

3 {

4 for (int i=0; i<size_of_Data_out; i++) Data_out[i]=0.0;

5 //

6 printf("size_of_Data_in %d: \n",size_of_Data_in);
7 printf("Data_in %g: \n",Data_in[0]);
8 printf("size_of_Data_out %d: \n",size_of_Data_out);
9 printf("Data_out %g: \n",Data_out[0]);
10

11 }

12

13 extern "C" void __declspec(dllexport) __stdcall test_init(char* pString, int length)

14 {

15 // Define buffer (make room for NULL-char)

16 const int max_length = 256;

17 char buffer[max_length+1];

18 //

19 // Print the length of pString

20 printf("test_init::length = %d\n",length);
21 //

22 // Transfer string

23 int nchar = min(max_length, length);

24 memcpy(buffer, pString, nchar);

25 //

26 // Add NULL-char

27 buffer[nchar] = '\0';

28 //

29 // Print it...

30 printf("%s\n",buffer);
31 }

32

33 extern "C" void __declspec(dllexport) __stdcall test_message(char* pString, int
max_length)↩→

34 {

35 // test message (larger than max_length)

36 char pmessage[] = "This is a test message "

37 "and it continues and it continues and it continues "

38 "and it continues and it continues and it continues "

39 "and it continues and it continues and it continues "

40 "and it continues and it continues and it continues "

41 "and it continues and it continues and it continues "

42 "and it continues and it continues and it continues ";

43

44 // Check max length - transfer only up to max_length number of chars

45 int nchar = min((size_t)max_length, strlen(pmessage)); // nof chars to transfer

46 // (<= max_length)

47 memcpy(pString, pmessage, nchar);

48 //

49 // Add NULL-char if string space allows it (FORTRAN interprets a NULL-char as

50 // the end of the string)

51 if (nchar < max_length) pString[nchar] = '\0';

52 }

50 -

10.11 type2_dll written in Delphi / Lazarus / Delphi

1 library hss_convert;

2

3 uses
4 SysUtils,

5 Classes,

6 Dialogs;

7

8 Type
9 array_1000 = array[0..999] of double;

10 Var
11 factor : array of double;
12 nr : integer;
13 {$R *.res}

14

15 procedure initialize(var InputSignals: array_1000;var OutputSignals: array_1000); cdecl;
16 var
17 i : integer;
18 begin
19 nr:=trunc(inputsignals[0]);

20 if nr>0 then begin
21 setlength(factor,nr);

22 for i:=1 to nr do
23 factor[i-1]:=Inputsignals[i];

24 outputsignals[0]:=1.0;

25 end else outputsignals[0]:=0.0;

26 end;
27

28 procedure update(var InputSignals: array_1000;var OutputSignals: array_1000); cdecl;
29 var
30 i : integer;
31 begin
32 for i:=0 to nr-1 do begin
33 OutputSignals[i] := InputSignals[i]*factor[i];

34 end;
35 end;
36

37 exports Initialize,Update;

38

39 begin
40 // Main body

41

42 end.

- 51

10.12 type2_dll written in C

1 #include <stdio.h>

2

3 void __declspec(dllexport) __cdecl initialize(double * Data_in, double * Data_out)

4 {

5 for (int i = 0; i < 2; i++) {

6 Data_out[i] = Data_in[i] * 2 + i;

7 printf("INIT \n");
8 printf("Data_in: %f \n", Data_in[i]);

9 printf("Data out: %f \n", Data_out[i]);

10 }

11 }

12 void __declspec(dllexport) __cdecl update(double * Data_in, double * Data_out)

13 {

14 for (int i = 0; i < 2; i++) {

15 Data_out[i] = Data_in[i] * 2 + i;

16 printf("Update\n");
17 printf("Data_in: %f \n", Data_in[i]);

18 printf("Data out: %f \n", Data_out[i]);

19 }

20 }

21 void __declspec(dllexport) __cdecl get_version(char * version)

22 {

23 printf("Empty HAWC2 Controller (ver. 0.1)\n");
24 }

25 void __declspec(dllexport) __cdecl message(char * message)

26 {

27 printf("Message\n");
28 }

The compile command on Windows for the example above example is given below, for GCC
and Intel c classic respectively:

gcc .\source.c -o ExampleHAWCController.dll -shared

icl .\source.c /LD /FeExampleHAWCController.dll

The compile command for Linux systems is given below, for GCC and Intel c classic. It should
be noted that there may be missing dependencies if the compiler used to build the controller
is not installed on the system which is running. This is known to happen on Linux systems for
GCC.

gcc ./source.c -o ./ExampleHAWCController.so -shared -fPIC

icx ./source.c -o ./ExampleHAWCController.so -shared -fPIC

52 -

10.13 type2_dll format example written in FORTRAN 90

1 subroutine update(array1,array2) bind(C, name="update")

2 implicit none
3 !DEC$ ATTRIBUTES DLLEXPORT :: update

4 !gcc$ attributes DLLEXPORT :: update

5 !gcc$ attributes cdecl :: update

6 real*8,dimension(2) :: array1 ! fixed-length array, data from HAWC2 to DLL

7 ! in this case with length 2

8 real*8,dimension(2) :: array2 ! fixed-length array, data from DLL to HAWC2

9 ! in this case with length 2

10 ! Code is written here

11 print *, "Update", array1(1)

12 end subroutine update

13 !---

14 Subroutine initialize(array1,array2) bind(C, name="initialize")

15 use iso_c_binding, only: C_CHAR
16 Implicit none
17 !DEC$ ATTRIBUTES DLLEXPORT :: initialize

18 !gcc$ attributes DLLEXPORT :: initialize

19 !gcc$ attributes cdecl :: initialize

20 real*8,dimension(2) :: array1 ! fixed-length array, data from HAWC2 to DLL

21 ! in this case with length 2

22 real*8,dimension(2) :: array2 ! fixed-length array, data from DLL to HAWC2

23 ! in this case with length 2

24 ! Code is written here

25 print *, "Initialize", array1(1)

26 End subroutine initialize

27 !---

28 Subroutine message(string256) bind(C, name="message")

29 use iso_c_binding, only: C_CHAR
30 Implicit none
31 !DEC$ ATTRIBUTES DLLEXPORT :: message

32 !gcc$ attributes DLLEXPORT :: message

33 !gcc$ attributes cdecl :: message

34 character(len=256) :: s

35 Character(kind=C_CHAR) :: string256(256)

36 integer :: i

37 ! Code is written here

38 s = "Message from controller DLL"

39 ! copy to C character arrya

40 do i=1,256

41 string256(i) = s(i:i)

42 enddo
43 End subroutine message

44 !---

45 Subroutine get_version(string256) bind(C, name="get_version")

46 use iso_c_binding, only: C_CHAR
47 Implicit none
48 !DEC$ ATTRIBUTES DLLEXPORT :: get_version

49 !gcc$ attributes DLLEXPORT :: get_version

50 !gcc$ attributes CDECL :: get_version

51 Character(kind=C_CHAR) :: string256(256)

52 ! Code is written here

53 string256(1:3) = (/"0",".","1"/)

54 End subroutine get_version

The compile command for the example above example is given below, for GCC and intel fortran
classic respectively:

gfortran .\source.f90 \

-o .\ExampleHAWCController.dll -shared -cpp -fno-underscoring

ifort .\source.f90 /FeExampleHAWCController.dll /fpp /dll

- 53

The compile command for Linux systems is given below, for GCC and Intel c classic. It should
be noted that there may be missing dependencies if the compiler used to build the controller
is not installed on the system which is running. This is known to happen on Linux systems for
GCC.

gfortran ./source.f90 -o ./ExampleHAWCController.so -shared -fPIC -cpp

ifort ./source.f90 -o ExampleHAWCController.so -shared -fPIC -fpp

54 -

In order to import the controller into HAWC2, the two sections should be added to the .htc file.
A section similar to the one directly below should be added in the dll section of the htc file.

1 begin type2_dll;

2 name empty_hawc_controller ;

3 filename ./PATH/TO/THE/CUSTOM/CONTROLLER.dll;

4 ;

5 dll_subroutine_init initialize ;

6 dll_subroutine_update update ;

7 ;

8 arraysizes_init 2 2 ;

9 arraysizes_update 2 2 ;

10 begin init ;

11 constant 1 2.3;

12 constant 2 3;

13 end init ;

14 ;

15 begin output ;

16 general time;

17 general time;

18 end output;

19 end type2_dll;

Additionally, lines should be added in the output section specifying what data from the interface
between the controller and HAWC2 is to be saved in the output file. Details on this can be found
the the Output chapter (Chapter 17) of the manual.

1 dll inpvec 6 1 # Data into the controller;

2 dll outvec 6 1 # Data out of the controller;

- 55

11 Wind and Turbulence

11.1 Main command block -wind

Obl. Command name Explanation
* wsp 1. Mean wind speed in center [m/s]
* density 1. Density of the wind [kg/m3]
* tint Turbulence intensity [-].
* horizontal_input This command determines whether the commands above should

be understood as defined in the global coordinate system
(with horizontal axes) or the meteorological coordinates system
(u,v,w) witch can be tilted etc.
1. (0=meteorological, 1=horizontal)

* center_pos0 Global coordinates for the center start point of the turbulence
box, meteorological coordinate system etc. (default should the
hub center)
1. G� [m]
2. H� [m]
3. I� [m]

* windfield_rotations Orientation of the wind field. The rotations of the field are
performed as a series of 3 rotations in the order yaw, tilt and
roll. When all angles are zero the flow direction is identical to
the global y direction.
1. Wind yaw angle [deg], positive if the wind comes from the
right side when sitting in the nacelle and looking upwind (i.e. in
the -H� direction).
2. Terrain slope angle [deg], positive when the wind comes from
below.
3. Roll of wind field [deg], positive when the wind field is rotated
according to the turbulence u-component.

* shear_format Definition of the mean wind shear
1. Shear type
0=none. !This option sets themeanwind speed to zero ! D̄ (I) = 0
1=constant D̄ (I) = wsp. The value is taken from the wsp

parameter.
2=logarithmic

D̄(I) = D0
log −I

�
0 +I

"

A0

log −I
�
0
A0

3=power law

D̄(I) = D0

(
−I�0 + I

"

−I�0

)U
4=linear

D̄(I) = D0
mD

mI

2. Parameter used together with shear type (case of shear type:
0=dummy, 1=dummy, 2=A0, 3= a, 4=3D/3I at center)

* turb_format 1. Turbulence format (0=none, 1=mann, 2=flex)

56 -

Obl. Command name Explanation
* tower_shadow_method 1. Tower shadow model (0=none, 1=potential flow – default,

2=jet model, 3=potential_2 (flowwhere shadow source is moved
and rotated with tower coordinates system). Please see section,
page 68 for sub block commands.

scale_time_start 1. Starting time for turbulence scaling [s]. Stop time is
determined by simulation length.

wind_ramp_factor Command that can be repeated as many times as needed.
The wind_ramp_factor is used to calculate a factor that is
multiplied to the wind speed vectors. Can be used to make
troublefree cut-in situations. Linear interpolation is performed
between C0 and Cstop.
1. time start, C0
2. time stop, Cstop
3. factor at C0
4. factor at Cstop

wind_ramp_abs Command that can be repeated as many times as needed.
The wind_ramp_abs is used to calculate a wind speed that is
added to the wind speed u-component. Can be used to make
wind steps etc. Linear interpolation is performed between C0 and
Cstop.
1. time start, C0
2. time stop, Cstop
3. wind speed at C0
4. wind speed at Cstop

user_defined_shear 1. Filename incl. relative path to file containing user defined
shear factors (example ./data/shear.dat)

user_defined_-
shear_turbulence

1. Filename incl. relative path to file containing user defined
shear turbulence factors (example ./data/shearturb.dat)

met_mast_wind 1. Filename incl. relative path to file containing time series of
wind components in meteorological coordinates. The file should
have four columns of data:
time, ED , EE and EF .

iec_gust Gust generator according to IEC 61400-1
1. Gust type
’eog’ = extreme operating gust

D (I, C) = D (I, C) − 0.37� sin
(

3c (C−C0)
)

) (
1 − cos 2c (C−C0)

)

)
’edc’ = extreme direction change

\ (C) = 0.5q0

(
1 − cos

(
c (C−C0)
)

))
’ecg’ = extreme coherent gust

D (I, C) = D (I, C) + 0.5�
(
1 − cos

(
c (C−C0)
)

))
’ecd’ = extreme coherent gust with dir. change

D (I, C) = D (I, C) + 0.5�
(
1 − cos

(
c (C−C0)
)

))
\ (C) = 0.5q0

(
1 − cos

(
c (C−C0)
)

))

- 57

Obl. Command name Explanation
’ews’ = extreme wind shear

EFA4B =

√
H2
"
+ I2

"

D(I, C) = D(I, C) + EFA4B �
(
1 − cos

(
2c (C−C0)

)

))
∗ cos

(
atan2

(
H" ,−I"

)
− q0

)
even though the ’ews’ expressions do not match the expressions
in the standard completely, it gives identical results provided a
mutual power law shear is used and the A parameter is set to

� =

2.5 + 0.2Vf1

(
�
Λ1

) 1
4

�

and the parameter i0 is set to 0, 90, 180, 270 [deg] respectively.
Note that:

• ." and /" refer to the horizontal and vertical wind speeds
respectively (expressed in meteorological coordinates, or
+" and," in figure 1).

• D refers to the rotor diameter.

2. AmplitudeA [m/s]. For the ’eog’, ’edc’, ’ecd’ this corresponds
to the parameter ’+gust’, ’0’, ’+cg’ respectively, in the IEC61400-1
standard.
3. Angle i0 [deg]
4. Time start, C0 [s]
5. Duration T [s]

11.2 Sub command block - mann

Block that must be included if the mann turbulence format is chosen. Normal practice is to use
all three turbulence components (u,v,w) but only the specified components are used. In 2008 the
turbulence generator was linked to the code so mannturbulence can be created without using
external software. The command create_turb_parameters will search for turbulence files with
names given below, but if these are not found the turbulence will be created.

A short explanation of the parameters L and UY
2
3 and its relation to the IEC61400-1 ed. 3

standard is given:

The fundamentals of the Mann model is isotropic turbulence in neutral atmospheric conditions.
The energy spectrum is given based on the Von Karman spectrum (1). In isotropic turbulence,
the properties of turbulence like variance and turbulent length scale is identical for all three
direction corresponding to vortex structures being circular.

� (:) = UY
2
3 !

5
3

(!:)4(
1 + (!:)2

) 17
6

(1)

The relation between wave number k and frequency f is related through the mean wind speed
*̄.

: =
2c 5
*̄

(2)

However, atmospheric conditions are not isotropic and the vortex structures become more
elliptic in shape with longer length scale and higher variance level in the u direction. In the

58 -

Mann model, this is accounted for using rapid distortion theory quantified through a shear
blocking factor Γ. A Γ parameter of 0 corresponds to isotropic turbulence, whereas a higher
Γ value is used for non-isotropic turbulence. The relation between non-isotropic and isotropic
properties as function of Γ can be seen in Figure 5. For neutral atmospheric conditions (often
referred to as "normal" conditions) it is recommended to use Γ = 3.9 in combination with
a length scale of ! = 0.8Λ1. Λ1 is defined as the wavelength where the longitudinal power
spectral density is equal to 0.05. According to the IEC61400-1 the wavelength Λ1 shall be
considered as a constant of 42m above a height of 60m, or 0.7I otherwise (I being the height).
In the Mann generation of turbulence a length scale L has to be used. This is the length scale of
the Von Karman spectrum (1) and therefore different than the length scale used in the Kaimal
formulation (3). The energy spectrum of Kaimal is formulated

� (5) = f2 4!/*̄(
1 + 6 5 !/*̄

) 5
3

(3)

where the input parameters are given based on the table values in

Figure 4: Information about Kaimal length scales and standard deviation ratio from the
IEC61400-1

Figure 5: Turbulence characteristics compared to isotropic conditions as function of gamma
parameter, Mann.. Left: Relation between variance is changed for higher shear distortions.
Right: The relation between length scales are also changed for non-isotropic turbulence. It is
recommended to use Γ = 3.9 for normal atmospheric conditions. This is also the requirement
in the IEC61400-1 standard. Isotropic conditions are obtained using Γ=0.

The result of using Γ = 3.9 is that the structure of the turbulence corresponds to the normal
atmospheric conditions, but the actual level of turbulence is also affected as seen in Figure 4.
It is not straight forward to give the exact analytical relationship between the input parameter
UY

2
3 and the final longitudinal variance and it is therefore very practical to introduce a turbulence

scaling factor SF. This turbulence scaling factor is calculated based on the actual variance level
in the box (normally extracted in the center of the box of longitudinal turbulence) and the target

- 59

variance f2
target based on the requested turbulence intensity f =)8 *̄. In this case of rescaling,

which is the normal usage, the input value for UY
2
3 can be any arbitrary value except for zero.

(� =

√
f2
target

f2 (4)

The scale factor is to be multiplied to every values in the turbulence box for all the u,v and w
directions. This is done automatically inside HAWC2.

11.2.1 Mann turbulence format

The mann turbulence binary format consist of one file per turbulence component, u,v,w. Each
file contains turbulence values stored as 32-bit floats (little endian). It can be read from python
using:

1 import numpy as np
2 u = np.fromfile(u_filename, dtype=np.float32).reshape(Nx,Ny,Nz)

Turbulence direction:

• Wrong direction (default in HAWC2 ≤ 13.0): First plane in file, u[0,:,:] , is box front.

• Correct direction (default in HAWC2>13.0): Last plane, u[-1,:,:] is box front.

The turbulence coordinate system and advection direction is detailed and illustrated in the table
below, and in figure 6 respectively. The coordinates given here assumes indexing starting at 0.

Location in file Box (x,y,z)
0 (0,0,0)
1 (0,0,1)
Nz-1 (0,0,-1)
Nz (0,1,0)
Nz+1 (0,1,1)
Ny*Nz-1 (0,-1,-1)
Ny*Nz (1,0,0)

Figure 6: Illustration of the Mann turbulence
coordinate system and advection direction.

Obl. Command name Explanation
create_turb_parameters With this command, the code will search for turbulence files with

names given below, but if these are not found the turbulence will
be created based on the given parameters.
1. Length scale L (L=33.6 according to the IEC standard at 42m
and above)
2. UY2/3 (when rescaling applied, 1.0 is normal practice)
3. W (3.9 for neutral atmospheric conditions)
4. Seed number (any integer will do)
5. High frequency compensation (1=point velocity only represent
local value which is closest to anemometer measurements,
recommended in most cases, 0=point velocity represents average
velocity in grid volume)

60 -

Obl. Command name Explanation
filename_u 1. Filename incl. relative path to file containing mann turbulence

u-component
(example ./turb/mann-u.bin)

filename_v 1. Filename incl. relative path to file containing mann turbulence
v-component
(example ./turb/mann-v.bin)

filename_w 1. Filename incl. relative path to file containing mann turbulence
w-component
(example ./turb/mann-w.bin)

* box_dim_u 1. Number of grid points in u-direction
2. Length between grid points in u-direction [m]

* box_dim_v 1. Number of grid points in v-direction
2. Length between grid points in v-direction [m]

* box_dim_w 1. Number of grid points in w-direction
2. Length between grid points in w-direction [m]

std_scaling Ratio between standard deviation for specified component related
to turbulence intensity input specified in main wind command
block.
If the std_scaling command is omitted, the SF is determined
based on the u-variance, the SF for v and w direction are kept
equal to u-direction (recommended)
1. Ratio to u-direction (default=1.0)
2. Ratio to v-direction (default=0.8)
3. Ratio to w-direction (default=0.5)

scaling_method If the std_scaling command is used, this command specifies
which method is used to scale the turbulent velocity components.
If one of the dont_scale or factor_scaling command is used, this
command is ignored.
1. (1=scaling is based on a standard deviation of theMann box by
convecting a point along the x coordinate at the velocity u_mean
at the y-z center of the box – default, 2=scaling is based on a
standard deviation calculated using the entire Mann box)

dont_scale If this command is used the normal scaling to ensure the specified
turbulence intensity is bypassed.
1. (0=scaling according to specified inputs – default, 1=raw
turbulence field used without any scaling)

factor_scaling If this command is used constant, scaling factors are applied.
1. Scaling factor in u-direction, �D
2. Scaling factor in v-direction, �E
3. Scaling factor in w-direction, �F

box_front 1. (’last_plane’=Advects turbulence data from end of file to
beginning of file - compliant with the Mann turbulence model
and generator, ’first_plane’=Advects turbulence from beginning
of file to end of file - opposite of the Mann turbulence model and
generator)
Accepts one argument, ’first_plane’ or ’last_plane’ (default as
of 13.1). Specifies whether the turbulence box front is the
first or the last turbulence plane in the turbulence file. Using
the argument ’last_plane’ complies with the definition of the
advection direction in the Mann turbulence model and built-
in turbulence generator. The default was corrected in HAWC2
version 13.1 from ’first_plane’ to ’last_plane’. This command
was introduced in HAWC2 13.1.

- 61

11.3 Sub command block - flex

Block that must be included if the flex turbulence format is chosen.

Obl. Command name Explanation
* filename_u 1. Filename incl. relative path to file containing flex turbulence

u-component
(example ./turb/flex-u.int)

* filename_v 1. Filename incl. relative path to file containing flex turbulence
v-component
(example ./turb/flex-v.int)

* filename_w 1. Filename incl. relative path to file containing flex turbulence
w-component
(example ./turb/flex-w.int)

std_scaling Ratio between standard deviation for specified component related
to turbulence intensity input specified in main wind command
block.
1. Ratio to u-direction (default=1.0)
2. Ratio to v-direction (default=0.7)
3. Ratio to w-direction (default=0.5)

11.4 File description of a user defined shear

In this file a user defined shear used instead, or in combination with one of the default shear
types (logarithmic, exponential...). When the user defined shear is used the name and location
of the datafile must be specified with the wind – user_defined_shear command. This command
specifies the location of the file and activates the user defined shear. If this shear is replacing
the original default shear the command wind – shear_format must be set to zero!

Only one shear can be present in a single file. The shear describes the mean wind profile of the
u, v and w component of a vertical cross section at the rotor. The wind speeds are normalized
with the mean wind speed defined with the command wind – wsp.

Line number Description
1 Headline (not used by HAWC2)
2 Information of shear v-component.

#1 is the number of columns, NC
#2 is the number of rows, NR

3 Headline (not used by HAWC2)
4..+NR Wind speed in v-direction, normalized with u-mean.

NC columns
1 Headline (not used by HAWC2)
+1..+NR Wind speed in u-direction, normalized with u-mean.

NC columns.
1 Headline (not used by HAWC2)
+1..+NR Wind speed in w-direction, normalized with u-mean.

NC columns
1 Headline (not used by HAWC2)
+1..+NC Horizontal position of grid points (meteorological coo)
1 Headline (not used by HAWC2)
+1..+NR Vertical position of grid points (meteorological coo)

62 -

11.5 Example of user defined shear file

1 # User defined shear file

2 3 4 # nr_v, nr_w array sizes

3 # shear_v component, normalized with U_mean

4 0.0 0.0 0.0

5 0.0 0.0 0.0

6 0.0 0.0 0.0

7 0.0 0.0 0.0

8 # shear_u component, normalized with U_mean

9 1.0 1.0 1.0

10 1.0 1.0 1.0

11 1.0 1.0 1.0

12 1.0 1.0 1.0

13 # shear_w component, normalized with U_mean

14 0.0 0.0 0.0

15 0.0 0.0 0.0

16 0.0 0.0 0.0

17 0.0 0.0 0.0

18 # v coordinates

19 -50.0

20 0.0

21 50.0

22 # w coordinates (zero is at ground level)

23 0.0

24 60.0

25 100.0

26 200.0

11.6 File description of a user defined shear turbulence

The same file format is used as for user_defined_shear (see above). Instead of a normalized
mean wind speed component, an additional turbulence scale factor is given by the user. The
defined scale factors are applied on top of (multiplied with) the normal turbulence scaling
coming from the turbulence model/box.

user_defined_shear_turbulence is an ad hoc and inconsistent scaling of a consistent turbulence
field to obtain a non-homogeneous turbulence field, with the turbulence intensity varying with
height. The HAWC2 developers do not recommend the use of this functionality, and users
should be aware that by using the user_defined_shear_turbulence the correlation properties
between the various components in space of the generated turbulence box will no longer be
valid as originally intended (for example when using the Mann turbulence model). This feature
will allow users to easily alter turbulence boxes with the ’cost’ it no longer holds a reasonable
physical representation of a turbulent wind field.

11.7 Example of user defined shear turbulence file

1 # User defined shear turbulence file

2 3 4 # nr_v, nr_w array sizes

3 # std_v component (to be multiplied with turbulence scaling)

4 0.0 0.0 0.0

5 0.0 0.0 0.0

6 0.0 0.0 0.0

7 0.0 0.0 0.0

8 # std_u component (to be multiplied with turbulence scaling)

9 1.0 1.0 1.0

10 1.0 1.0 1.0

11 1.0 1.0 1.0

12 1.0 1.0 1.0

13 # std_w component (to be multiplied with turbulence scaling)

- 63

14 0.0 0.0 0.0

15 0.0 0.0 0.0

16 0.0 0.0 0.0

17 0.0 0.0 0.0

18 # v coordinates

19 -50.0

20 0.0

21 50.0

22 # w coordinates (zero is at ground level)

23 0.0

24 60.0

25 100.0

26 200.0

11.8 Sub command block - wakes

Block that must be included if the Dynamic Wake Meandering model is used to model the wind
flow from one or more upstream turbines. The model is described, calibrated and validated
in [1, 2], where [2] contains both a recalibration and a validation against measurements. In
order to make the model function, two Mann turbulence boxes must be used. One for the
meandering turbulence – which is a box containing atmospheric turbulence, but generated with
a course resolution in the v,w plane (grid size of 1 rotor diameter). It is important that the
turbulence vectors at the individual grid points represent a mean value covering a grid cube.
It is also important that the total size of the box is large enough to cover the different wake
sources including their meandering path. The resolution in the u-direction should be as fine a
possible. The used length scale should correspond to normal turbulence condition. The other
turbulence box that is needed is a box representing the micro scale turbulence from the wake
of the upstream turbine itself. The resolution of this box should be fine (e.g. 128x128 points) in
the v,w plane which should only cover 1 rotor diameter. The resolution in the u direction should
also be fine, but a short length of the box (e.g. 2.5Diameter) is OK, since the turbulence box is
reused. The length scale for this turbulence is significantly shorter than for the other boxes since
it represents turbulence from tip and root vortices mainly. A length scale of 1/16 rotor diameter
seems appropriate.

The two turbulence boxed are included by the following sub commands

1 begin mann_meanderturb;

2 (parameters are identical to the normal Mann turbulence box, see above)

3 end mann_meanderturb;

4

5 begin mann_microturb;

6 (parameters are identical to the normal Mann turbulence box, see above)

7 end mann_microturb;

The rest of the wake commands are given in the following table.

Obl. Command name Explanation
* nsource 1. Number of wake sources. If 0 is used the wake module is

by-passed (no source positions can be given in this case).
* source_pos Command that must be repeated nsource times. This gives the

position of the wake source (hub position) in global coordinates.
Wake source position given for down stream turbines are however
not used in the simulations since they don’t affect the target
turbine.
1. x-pos [m]
2. y-pos [m]
3. z-pos [m]

64 -

Obl. Command name Explanation
* op_data Operational conditions for the wake sources. This command can

be repeated nsource times to independently set the operation
data of individual sources. If op_data appears once, the same
operation data is used for all sources.
1. Rotational speed [rad/s]
2. Collective pitch angle [deg]. Defined positive according to the
blade root coo, with z-axis from root towards tip. Note, this is
opposite to the traditional notation for a pitch angle.

ble_parameters Parameters used for the BLEmodel used for developing the wake
deficit due to turbulent mixing.
1. :1 [-], default=0.10
2. :2 [-], default=0.008
3. clean-up parameter (0=intermediate files are kept,
1=intermediate files are deleted), default=1

microturb_factors Parameters used for scaling the added wake turbulence according
to the deficit depth and depth derivative.
1. :<1 [-], factor on deficit depth, default=0.60
2. :<2 [-], factor on depth derivative, default=0.25

multiple_deficit_method Command that is used for choosing the best approach for handling
multiple deficit
1. method (1=MAX operator (default), 2=Direct summation)
In general it is recommended to use the MAX operator when the
ambient free wind speed is below rated and the direct summation
approach above rated wind speed.

tint_meander Turbulence intensity of the meander turbulence box. If this
command is not used then the default turbulence intensity from
the general wind commands is used (normal use)
1. Turbulence intensity [-]

use_specific_deficit_file File with the deficits used in the correct downstream distance is
used instead of the build in deficit generator. The wind speed
deficits are non-dim with the mean wind speed.
1. Filename incl. path (e.g. ./data/deficit.data)

write_ct_cq_file File including the local axial and tangential forces (non-dim) as
function of blade radius is written.
1. Filename incl. path (e.g. ./res/ct_cq.data)

write_final_deficits File with the deficits used in the correct downstream distance is
written. The windspeed deficits are non-dim with the mean wind
speed.
1. Filename incl. path (e.g. ./res/ct_cq.data)

11.9 File description of a user defined wake deficit file

When another flow solve has been used to find the non-dim turbulence deficit, eg. using an
actuator disc approach, this can replace the deficit otherwise calculated internally. This method
cannot be used together with multiple deficits as only one deficit can be read.

Line number Description
1 #1 Any single character (eg. #)

#2 The number of rows (NR)
#3 (optional) The rotor diameter. If not included, the diameter of
the reference turbine is used.

2..+NR Deficit non-dim with ambient free mean wind speed.
#1 Radius (non-dim with rotor radius)

- 65

Line number Description
#2 Deficit (non-dim with free mean wind speed). In the free

11.10 Example of user defined wake deficit file

1 # 121 178.0

2 0.000000000E+00 8.276891200E-01

3 2.500000000E-02 8.486243600E-01

4 5.000000000E-02 8.809613720E-01

5 7.500000000E-02 9.007844070E-01

6 1.000000000E-01 8.957724550E-01

7 1.250000000E-01 8.660702830E-01

8 1.500000000E-01 8.303410890E-01

9 1.750000000E-01 8.044380440E-01

10 2.000000000E-01 7.895593800E-01

11 2.250000000E-01 7.786515560E-01

12 2.500000000E-01 7.691674220E-01

13 2.750000000E-01 7.618372330E-01

14 3.000000000E-01 7.572012850E-01

15 3.250000000E-01 7.550918200E-01

16 3.500000000E-01 7.542137030E-01

17 3.750000000E-01 7.518827010E-01

18 4.000000000E-01 7.456746090E-01

19 4.250000000E-01 7.357259740E-01

20 4.500000000E-01 7.250309980E-01

21 4.750000000E-01 7.168460970E-01

22 5.000000000E-01 7.119492260E-01

23 5.250000000E-01 7.088296670E-01

24 5.500000000E-01 7.057605130E-01

25 5.750000000E-01 7.021459650E-01

26 6.000000000E-01 6.983228280E-01

27 6.250000000E-01 6.947171830E-01

28 6.500000000E-01 6.913423360E-01

29 6.750000000E-01 6.879199230E-01

30 7.000000000E-01 6.842943230E-01

31 7.250000000E-01 6.806519720E-01

32 7.500000000E-01 6.773263690E-01

33 7.750000000E-01 6.744196220E-01

34 8.000000000E-01 6.716445590E-01

35 8.250000000E-01 6.684818930E-01

36 8.500000000E-01 6.644046880E-01

37 8.750000000E-01 6.592242170E-01

38 9.000000000E-01 6.529686490E-01

39 9.250000000E-01 6.445576730E-01

40 9.500000000E-01 6.324201240E-01

41 9.750000000E-01 6.173566910E-01

42 1.000000000E+00 5.982423590E-01

43 1.028634580E+00 5.679249380E-01

44 1.058116050E+00 5.982195030E-01

45 1.088469450E+00 7.292761710E-01

46 1.119720570E+00 9.095984580E-01

47 1.151895960E+00 1.014958390E+00

48 1.185022960E+00 1.022114240E+00

49 1.219129700E+00 1.017341600E+00

50 ...

51 8.903031630E+00 1.000285950E+00

52 9.165402860E+00 1.000213540E+00

53 9.435533870E+00 1.000143160E+00

54 9.713654150E+00 1.000066170E+00

55 1.000000000E+01 1.000018010E+00

66 -

11.11 Sub command block – tower_shadow_potential

Block that must be included if the potential flow tower shadow model is chosen.

Obl. Command name Explanation
* tower_offset The tower shadow has its source at the global coordinate z axis.

The offset is the base point for section 1
1. Offset value (default=0.0)

* nsec Command that needs to present before the radius commands.
1. Number of datasets specified by the radius command.

* radius Command that needs to be listed nsec times.
1. z coordinate [m]
2. Tower radius at z coordinate [m]

11.12 Sub command block – tower_shadow_jet

Block that must be included if the model based on the boundary layer equations for a jet is
chosen. This model is especially suited for downwind simulations.

Obl. Command name Explanation
* tower_offset The tower shadow has its source at the global coordinate z axis.

The offset is the base point for section 1
1. Offset value (default=0.0)

* nsec Command that needs to present before the radius commands.
1. Number of datasets specified be the radius command.

* radius Command that needs to be listed nsec times.
1. z coordinate [m]
2. Tower radius at z coordinate [m]
3. Cd drag coefficient of tower section (normally 1.0 for circular
section, but this depends heavily on the reynold number)

11.13 Sub command block – tower_shadow_potential_2

Block that must be included if the tower shadow method 3 is chosen. This potential model is
principally similar to the potential flow model described previously but differs in the way that
the shadow source is moved and rotated in space as the tower coordinate system is moving and
rotating. It is also possible to define several tower sources e.g. if the tower is a kind of tripod or
quattropod. Just include more tower_shadow_potential_2 blocks if more sources are required.

The coordinate system that the shadow method is linked to is specified by the user, e.g. the
mbdy coordinate from the tower main body. To make sure that the tower source model is always
linked in the same way as the tower (could be tricky since the tower is fully free to be specified
along the x,y or z axis or a combination) the base coordinate system for the shadow model is
identical to the coordinates system obtained by the local element coordinates, where the z axis
is always pointing from node 1 towards node 2. This is the reason that the tower radius input
has to specified with positive z-values, see below.

Obl. Command name Explanation
* tower_mbdy_link Name of the main body to which the shadow source is linked.

1. mbdy name
* nsec Command that needs to present before the radius commands.

1. Number of datasets specified by the radius command.
* radius Command that needs to be listed nsec times.

- 67

Obl. Command name Explanation
1. z coordinate [m] (allways positive!)
2. Tower radius at z coordinate [m]

11.14 Sub command block – tower_shadow_jet_2

Block that must be included if the tower shadowmethod 4 is chosen. This jet model is principally
similar to the jet model described previously but differs in the way that the shadow source is
moved and rotated in space as the tower coordinate system is moving and rotating. It is also
possible to define several tower sources e.g. if the tower is a kind of tripod or quattropod. Just
include more tower_shadow_jet_2 blocks if more sources are required.

The coordinate system that the shadow method is linked to is specified by the user, e.g. the
mbdy coordinate from the tower main body. To make sure that the tower source model is always
linked in the same way as the tower (could be tricky since the tower is fully free to be specified
along the x,y or z axis or a combination) the base coordinate system for the shadow model is
identical to the coordinates system obtained by the local element coordinates, where the z axis
is always pointing from node 1 towards node 2. This is the reason that the tower radius input
has to specified with positive z-values, see below.

Obl. Command name Explanation
* tower_mbdy_link Name of the main body to which the shadow source is linked.

1. mbdy name
* nsec Command that needs to present before the radius commands.

1. Number of datasets specified by the radius command.
* radius Command that needs to be listed nsec times.

1. z coordinate [m]
2. Tower radius at z coordinate [m]
3. �3 drag coefficient of tower section (normally 1.0 for circular
section, but this depends heavily on the reynold number)

11.15 Sub command block – user_wind_dll

A user defined DLL can be used to provide additional wind velocity on top of what is already
defined by wind input in HAWC2. During simulation, HAWC2 calls the DLL with position as
argument, and the DLLmust provide the wind velocity in that position on return. Apart from the
position, HAWC2 also parses time and user-specified arguments to the DLL - the user-specified
arguments are defined in the same output block format as is used for type2_dlls and hawc_dlls
and as regular output. See Section B for further details.

Obl. Command name Explanation
* filename Path and name of DLL.

dll deprecated alternative to filename.
* subroutine Subroutine name to call in DLL.

refsys Reference coordinates for position (in) and velocity (in/out).
0. meteorological coordinates (default)
1. global coordinates

begin output;
<output block> Output block definition which can be used to provide additional

user-specified input to the DLL, see example in Section B . Note
that the only output types that can be used are:
- general,
- dll,

68 -

Obl. Command name Explanation
- constraint, and
- mbdy.

end output;

11.16 Sub command block – turb_export

With this sub command block, a mann format turbulence box including information from shear,
wakes, tower shadow etc. is written. Same data point positions are used as specified in the
turbulence module including the parameters specified for the originally used mann turbulence
box.

Obl. Command name Explanation
* filename_u Filename of turbulence box with axial turbulence

1. File name
* filename_v Filename of turbulence box with lateral turbulence

1. File name
* filename_w Filename of turbulence box with vertical turbulence

1. File name
samplefrq 1. Sample frequency
time_start 1. Time at which the the turbulence recording will start
nsteps 1. Number of steps between output
box_dim_v 1. Number of points in v-direction

2. Distance between points in v-direction
box_dim_w 1. Number of points in w-direction

2. Distance between points in w-direction

11.17 How the wind speed is constructed

The wind speed is finally constructed based on the following user inputs (and in the meteoro-
logical coordinate system:

wsp = action_windspeed_u + gust

+ (wsp_mean*wind_ramp_factor+wind_ramp_abs)*shear_factor

+ (wsp_mean*wind_ramp_factor+wind_ramp_abs)*user_defined_shear

+ met_mast_wind + dwm_deficit_u*wind_ramp_factor

+ dwm_turb*wind_ramp_factor

+ turb * scaling * user_defined_shear_turbulence * wind_ramp_factor

+ user_wind_dll velocity

The above commands are explained in more detail in the sections above. Some additional
clarifications are as follows:

• action_windspeed_u corresponds to the DLL action command wind windspeed_u.

• wsp_mean is the mean wind speed as set by the wsp command.

• shear_factor is the determined by the shear type as set by the shear_format command.

• scaling is affected by the commandsstd_scaling,dont_scale, and/orfactor_scaling.
See also the description in the Mann section above.

• dwm_deficit_u is the velocity deficit in the wake as given by the Dynamic Wake
Meandering model (DWM).

- 69

• dwm_turb is the added turbulence due to the wake as given by the DWM model.

After transforming to the global coordinate system, the tower shadow deficit is added as follows:

wspG = wspG*tower_shadow_factor

70 -

12 Aerodynamics

In HAWC2 there are different fidelity aerodynamic models available for both HAWTs and
VAWTs. In addition, there are different sub-models to model different effects, such as the
dynamic inflow model and unsteady 2-D airfoil aerodynamic model (usually referred to as the
dynamic stall model). The different models for the simulation are chosen by command blocks
including different commands. Some recommendations are listed as follows to ease the choice
of the models.

1) For bothHAWTs andVAWTs, theMHHBeddoes dynamic stallmodel is always recommended
to be turned on, even for steady-state simulations. This is because the model includes lift, drag
and moment terms that depend on the rate of rotation and acceleration of the airfoil section.
These terms will generally be constant and non-zero for steady state simulations even with stiff
turbines and uniform inflow. For more details, please see [3, 4].

2) For aeroelastic simulations of HAWTs, the aerodynamic model have different fidelities and
different computational efforts. The BEM model with dynamic inflow implemented on a polar
grid, as described in [5], is enabled with the command ‘induction_method 1‘ in the aero
command block.

There are higher fidelity models available since HAWC2 13.0: the near wake model and vortex
cylinder model that compute the effects of swept blades and non-planar rotor geometry on the
aerodynamic induction and consequently on the aerodynamic loads. For details see [6, 7, 8]. The
following commands in the ’aero’ block will enable both the near wake model and the vortex
cylinder model, which corresponds to the highest fidelity modeling available in HAWC2. The
computational time will be increased compared to BEM modeling, but the results for curved
and deflected blades will be closer to lifting line or CFD simulations as shown in the references
cited above.

1 induction_method 2 ;

2 begin bemwake_method ;

3 vortex_cylinder_model 1;

4 wake_rot_effect 1;

5 end bemwake_method ;

6 begin nearwake_method ;

7 nw_sweep 1;

8 end nearwake_method ;

12.1 Main command block - aero

This module set up parameters for the aerodynamic specification of the rotor. It is also possible
to submit aerodynamic forces to other structures as example the tower or nacelle, but see chapter
(Aerodrag) regarding this. The module can be added as many times as requested if multiple
aerodynamic rotors are needed.

Obl. Command name Explanation
(*) name Name of rotor (in case of multiple rotors defined this is

obligatory.)
* nblades Must be the first line in aero commands!

1. Number of blades
* hub_vec Link to main-body vector that points downwind from the rotor

under normal conditions. This corresponds to the direction from
the pressure side of the rotor towards the suction side where the
coordinate system is normally taken from the main shaft system..
1. mbdy name or ’old_input’ if old_htc_structure format is
applied.

- 71

Obl. Command name Explanation
2. mbdy coo. component (1=x, 2=y, 3=z). If negative the opposite
direction used. Not used together with old_htc_structure input
(specify a dummy number).
3. Node number (optional). Node number on mbdy where rotor
center is located. ’last’ can also be used (default if no value is
present).

* link Linker between structural blades and aerodynamic blades. There
must be same number of link commands as nblades!
1. blade number
2. link chooser – options are
- mbdy_c2_def (used with new structure format)
- blade_c2_def (used with old structure format, see description
below in this chapter)
3. mbdy name (with new structure format), not used to anything
with old structure format.

* ae_filename 1. Filename incl. relative path to file containing aerodynamic
layout data (example ./data/hawc2_ae.dat)

* pc_filename 1. Filename incl. relative path to file containing profile
coefficients (example ./data/hawc2_pc.dat)

* induction_method 1. Choice between which induction method that shall be used
(0=none, 1=normal BEM dynamic induction, 2= Near Wake
induction method, 3= VAWT)

only_update_r_mono_incr 1. Should the induction model be updated if the blade radius
doesn’t monotonically increase towards the tip? Then some
assumptions in the aerodynamic induction models are no longer
valid and the crashesmay occur. (0=always update, 1=only update
if the radius is increasing monotonically, otherwise keep values
from last time step)(default=0)

rotate_sec Define rotation of section relative to default orientation. This
command is needed when simulating a counter-clockwise
rotating rotor.
1. \G (must be 0.0)
2. \H (0.0 (default, for clockwise-rotating rotor), 180.0 (for
counter-clockwise rotating rotor))
3. \I (must be 0.0)
An illustrated example to convert from CW to CCW is available
in the HAWC2Public/examples repository.

* aerocalc_method 1. Choice between which aerodynamic load calculation method
that shall be used. (0=none, 1=normal)

aerosections Number of aerodynamic calculation points at a blade.
The distribution is performed automatically using a cosine
transformation which gives closest spacing at root and tip.
1. Number of points at each blade.

aero_distribution 1. Distribution method of aerodynamic calculation points.
Options are:
- “default” number. The distribution is performed automatically
using npoints position with a cosine transformation which gives
closest spacing at root and tip.
- “ae_file” set. The distribution is given with same spacing as
values in the ae_file with set number set..

* ae_sets Set number fromae_filename that is linked to blade 1,2,...,nblades
1. set for blade number 1
2. set for blade number 2

72 -

https://gitlab.windenergy.dtu.dk/HAWC2Public/examples/-/tree/master/hawc2/turbine_concepts/cw_ccw

Obl. Command name Explanation
.
.
.
nblades. set for blade number nblades

* tiploss_method 1. Choice between which tip-loss model that shall be used
(0=none, 1=prandtl (default))

* dynstall_method 1. Choice between which unsteady airfoil aerodynamics model
that shall be used (0=none, 1=Stig Øye method (only stalled
flow part, not recommended), 2 or 3=unified method combining
MHH Beddoes method for sections without flaps and Gaunaa-
Andersen-Bergami method with deformable Trailing Edge Flaps.
For backwards compatibility, the default values for the attached
flow indicial function terms are identical to the values used
in the HAWC2 releases before 12.9. They correspond to the
default values of the previous MHH model when choosing
dynstall_method 2 and those for the previous ATEFlap model
when choosing dynstall_method 3, see also Section 12.3).

3d_correct_method Airfoil Cl values from the pc_file is modified for 3D effects.
1. Correctionmethod (1=Snelmethod for correction of Cl values)

external_bladedata_dll Blade structural data are found in an external encrypted dll. If
this command is present the following command lines shall not
be present (ae_filename, pc_filename and ae_sets).
1. Company name (that has been granted a password, eg. dtu).
2. Password for opening this specific dll, eg. test1234
3. path and filename for the dll. eg. ./data/encr_blade_data.dll

output_profile_coef_filename Interpolated profile coefficients at all aerodynamic calculation
points are written into a data file. This command can not be used
in combination with encrypted_profile_coef_filename.
1. path and filename for the dll. eg. ./res/aero_profiles.dat

12.2 Sub command block – dynstall_so

Block that may be included if the Stig Øye dynamic stall method is chosen. If not included
defaults parameters are automatically used. The Stig Øyemodel lacks the attached flow unsteady
aerodynamics model and may lead to unphysical aeroelastic vibrations for example due to
missing torsion rate terms.

Obl. Command name Explanation
dclda 1. Linear slope coefficient for unseparated flow (default=6.28)
dcldas 1. Linear slope coefficient for fully separated flow (default=3.14)
alfs 1. Angle of attack [deg] where profile flow is fully separated.

(default=40)
alrund 1. Factor used to generate synthetic separated flow Cl values

(default=40)
taufak 1. Time constant factor in first order filter for F function

(default=10.0). Internally used as tau=taufak*chord*vrel

12.3 Sub command block – dynstall_mhh or dynstall_ateflap

This Block may be included if the unified unsteady airfoil aerodynamics model is chosen that
combines the MHH model [9, 4, 10] and the ATEFlap model described in [11].

- 73

These models were different until HAWC2 12.9 and are combined since HAWC2 13.0. For
backwards compatibility, both names of the command block are recognized. If the block is
not part of the .htc file, default values are used. The default values for the indicial function
used in attached flow depend on which dynstall_method is chosen, again to ensure backwards
compatibility. If dynstall_method 2 is chosen, a two term indicial function is used with the same
default values as in the dynstall_MHH model up to HAWC2 12.9, approximating the response
of a flat plate. If dynstall_method 3 is chosen, a three term indicial function method is used with
the same default values as the dynstall_ATEFlap model up to HAWC2 12.9, approximating the
response of a NACA 64-418 profile. See the following table for the exact values. Aside from
these indicial function default values, dynstall_method 2 and 3 are identical since HAWC2 13.0.

The unified dynamic stall model is the recommendedmodel for a turbine with or without trailing
edge flaps. It consists of an attached flow part that covers the Theodorsen effect as well as torsion
rate terms and added mass terms, as well as a dynamic stall part that simulates trailing edge
stall. The Theodorsen effect, that is modeled as an effective angle of attack lagging behind the
quasi steady angle of attack, is deactivated based on the separation point position, [4]. Typically,
this makes it unnecessary to deactivate the model in more demanding cases such as standstill.
However, for very fast, large amplitude changes of angle of attack, combined with low relative
velocities, which may for example occur for a VAWT at very low tip speed ratio, angles of attack
around 180 degrees may be reached faster coming from the attached flow region than the flow
can separate. This can lead to unphysical discontinuities in lift and drag coefficient and the user
is advised to either tune the time constants or deactivate the model in this case.

If a flap section is defined, the model requires a .ds input file containing pre-processed steady
aerodynamic data for the blade sections containing a flap (see Section 12.12 for the file
specifications). Sections without any flap are attributed steady input data according to the
aerodynamic layout specified in the ae_filename.

The dynamic stall part of the model interpolates between an attached flow lift coefficient curve,
which extends the linear lift region of the airfoil polar, and a fully separated lift coefficient.
The interpolation is done according to a separation point position that is between 0 (separation
point at leading edge: fully separated flow) and 1 (separation point at trailing edge: fully
attached flow). How these lift coefficients and the steady state separation point position are
determined is described in [9]. Since HAWC2 13.0, the model will deactivate itself for the
aerodynamic sections where 1) the thickness is above a user defined maximum value (default:
99.99% thickness), 2) a reasonable attached flow region couldn’t be found or 3) the determined
steady state separation point is outside of the airfoil chord for some angle of attack values.
This deactivation will likely only trigger for sections close to the root, that are either a cylinder
or interpolated between a very thick airfoil and a cylinder. A logfile message will inform
about the deactivation. If the airfoil thickness limit is exceeded, the airfoil data preprocessor
will not run so output values of for example attached flow lift gradient in the deactivation
logfile message will be dummy values. The maximum allowable thickness max_thickness, the
minimumallowable linear region lift gradientmin_dclda and themaximumallowable separation
point value max_fsep where the model is still active can be user defined, see the following table.

The user can choose to output the dynamic stall data for all airfoil section to ensure that the
automatic preprocessing works as intended. The output files contain the following information:
The first 7 lines contain a logical determining if the model was deactivated (T/F), the zero lift
AOA alfa0, the linear lift region lift gradient dclda, the lower AOA of full separation alfa_fs_l,
the AOAs at the border of the attached flow region alfa_sl_neg and alfa_sl_pos and the higher
AOA of full separation alfa_fs_u. Then follow 6 columns of preprocessed airfoil data: the range
of AOAs in the first column, and then as function of those AOAs the limited attached flow lift
coefficient cl_att_lim, the lift coefficient cl_input given in the input polar data, the linear lift
coefficient cllin, the fully separated lift coefficient cl_fullsep and the separation point position
f_point.

Due to the torsion rate and added mass terms, the lift coefficients predicted by this unsteady

74 -

airfoil aerodynamics model can reach very high values. The torsion rate lift coefficient is
2;,C>AB = c)0 ¤\ (Eq (5) in [4]), and the added mass normal force coefficient 2=,022 = −c)0

¥H
*

(Eq (13) in [4]). The term)0 in these equations is)0 = 2/(2*) with the chord 2 and the
relative velocity *; ¤\ is the rate of rotation of the airfoil and ¥H is the acceleration of the
airfoil perpendicular to the chord. The lift coefficient from Eq (5) has a relative velocity in the
denominator. The normal force coefficient from Eq (13), which will have components in lift
and drag coefficient depending on the angle of attack, has a relative velocity squared in the
denominator. Both coefficients can reach very large values if the relative velocity is close to
zero. However because they are multiplied by the relative velocity squared to compute the lift
and drag forces, these large values will not result in large forces. Thus if the code predicts very
large lift and drag coefficients, the relative velocity and, most importantly, the forces should be
investigated. If the forces are reasonable, then it is safe to assume that the large coefficients are
not problematic but instead correctly modeling the aerodynamic forces due to torsion rate or
added mass.

Obl. Command name Explanation
a1 1. Coefficients of the exponential potential flow step response ap-

proximation: Phi(s)=1-A1*exp(-b1*s)-A2*exp(-b2*s). (default
when dynstall_method 2= 0.165)

a2 1. Coefficients of the exponential potential flow step response ap-
proximation: Phi(s)=1-A1*exp(-b1*s)-A2*exp(-b2*s). (default
when dynstall_method 2= 0.335)

b1 1. Coefficients of the exponential potential flow step response ap-
proximation: Phi(s)=1-A1*exp(-b1*s)-A2*exp(-b2*s). (default
when dynstall_method 2= 0.0455)

b2 1. Coefficients of the exponential potential flow step response ap-
proximation: Phi(s)=1-A1*exp(-b1*s)-A2*exp(-b2*s). (default
when dynstall_method 2 =0.300)

update Choice between update methods:
1. 1 (default)=>update aerodynamics all iterations all timesteps;
0=>only update aerodynamics first iteration each new timestep

taupre 1. Non-dimensional time-lag parametersmodeling pressure time-
lag. Default value =1.5

taubly 1. Non-dimensional time-lag parameters modeling boundary
layer time-lag. Default value=6.0

only_potential_model 1. 0(default)=>run full unsteay airfoil aerodynamics model;
1=>run only attached flow part

max_cl_attached 1. Maximum value of lift coefficient for attached flow.
flap Command to define a flap section. The flap is defined on all the

blades of the rotor. Command syntax:
1. Starting point of flap section given as distance from the root
along the half chord line [in m].
2. Ending point of flap section given as distance from the root
along the half chord line [in m]. Should be larger than the starting
point value.
3. Filename incl. relative path to .ds file containing pre-processed
aerodynamic steady input data. See .ds file specifications in the
following paragraph.
N.B. The locations along the blade refer to the curved length.
They are given along the half-chord line (as the layout in ae_file
). A maximum of 99 flap sections can be defined.

ais Coefficients for the indicial response exponential function
(default values given for dynstall_method 3):
1. A1 (default= 0.1784)
2. A2 (default=0.07549)

- 75

Obl. Command name Explanation
3. A3 (default=0.3933)
Default coefficients describe the step response of a NACA64-418
profile, where t/c=0.18.

bis Coefficients of the exponential potential flow step response
approximation (default values given for dynstall_method 3):
1. B1 (default= 0.8000)
2. B2 (default= 0.01815)
3. B3 (default= 0.1390)
Default coefficients describe the step response of a NACA64-418
profile, where t/c=0.18.

hystar 1. Camberline coef. (default= -4.675844E-003)
fylestar 1. Camberline coef. (default= +4.155446E-004)
fdydxle 1. Camberline coef. (default= +7.236104E-003)
gdydxle 1. Camberline coef. (default= +3.309147E-003)
min_dclda 1. Minimum linear region lift gradient (The model will be

deactivated for an aerodynamic section if the linear region lift
gradient is smaller than this value. Default = 3.0)

max_fsep 1. Maximum separation point value (The model will be
deactivated for an aerodynamic section if the maximum
separation point value is larger than this value. Default = 1.2)

max_thickness 1. Maximum relative thickness value (The model will be
deactivated for an aerodynamic section if the relative thickness
is larger than this value. Default = 99.99%)

output_polar_filename 1. Filename for detailed output of the processed airfoil data. One
file per aerodynamic section will be saved, where the user defined
filenamewill be extended by the blade number and position along
the curvedlength.

The camber line coefficients describe the camber line deformation shape induced by the flap;
they are computed according to the thin-airfoil model described in [12]. Hystar and fylestar are
dimensionless parameters corresponding to the shape integrals Hy and FyLE normalized by the
half-chord length. The default coefficients refer to a 10% chord length flap with a continuous
deformation shape, describing a circular arc, whose chord forms an angle of 1 degree with the
horizontal axis.

12.4 Sub command block – aero_noise

If this command block is used, aero-acoustic calculations are performed. The blade is discretized
spanwise into elementary blade sections corresponding to the aerodynamic calculation points of
the main command block – aero, i.e. as defined by the command ’aerosections’. Aerodynamic
noise is calculated for each of these blade sections and subsequently added at the observer
location(s) assuming incoherent noise sources. Only geometrical spreading is considered for
the noise propagation between blade sections and observer. Details of the implementation for
the turbulent inflow, trailing edge and stall noise models can be found in Bertagnolio et al,
A combined aeroelastic-aeroacoustic model for wind turbine noise: verification and analysis
of field measurements, Wind Energy (20), 2017. As for the loading-thickness noise model,
the implementation is described in Bertagnolio et al, A temporal wind turbine model for low-
frequency noise, InterNoise (Conf. Proc.), 2017.

76 -

Obl. Command name Explanation
noise_mode 1. Noise mode (0=no noise calculation, 1=compute noise at each

time-step on the fly, 2=store aerodynamic data for later noise
calculation as post-processing (using option 3 or 4), 3=compute
noise at each time-step using stored data, 4=compute steady-state
noise using stored data and rotor disk azimuthal sector averaging
yielding large time-saving) (default=0)

noise_start_end_time Start and end time for noise computation.
1. Start time, C0 [s]
2. End time, C1 [s]
(default: at all time)

noise_deltat 1. Time-step for noise calculation (default: at each HAWC2 time-
step)

noise_azimuth_sectors 1. Number of rotor disk azimuthal sectors when running
noise_mode=4 (default=16)

atmospheric_pressure 1. Atmospheric pressure [Pa] (default=101325.)
temperature 1. Temperature [deg. Celsius] (default=20.)
octave_bandwidth 1. Octave band frequency centers used for defining noise spectra.

Options are: 1, 3, 12 and 24 (default=3)
spl_min_max_frq Minimum and maximum computed frequency for

integrated sound pressure level calculations.
1. Minimum frequency, 5 A<8= [Hz]
2. Maximum frequency, 5 A<0G [Hz]
(default: all octave band frequency centers are used)

turbulent_inflow_noise 1. Turbulent inflow noise model (0=using Von Karman
turbulence spectra, 1=using Mann atmospheric turbulence
model) (default=0)

turbulent_inflow-
_thickness_correction

1. Turbulent inflow thickness correction (0=none, 1=correction
is added to turbulent inflow noise) (default=0)

mann_turbulence_parameters Mann turbulence parameters.
1. L: turbulent integral length (default=29.7m)
2. UY2/3: energy level (default=1.0)
3. W: anisotropy factor (default=3.7)
If any value is negative, then its default value is assumed.

surface_roughness 1. Surface roughness, z0 (If specified, it is used to re-define the
Mann turbulence parameters)

trailing_edge_noise 1. Trailing edge model (0=none, 5=TNO ’frba’ model, 31=Amiet
’frba’ model, 41=Amiet ’asfi’ model) (default=0)

* bldata_filename 1. Filename incl. relative path defining tabulated input data for
trailing edge noise model.

trailing_edge_serration Trailing edge serration model parameters.
1. '1 Inboard radius [m]
2. '2 Outboard radius [m]
3. !B4A Serration periodic span length [m]
3. �B4A Serration crest to trough height [m]

stall_noise 1. Stall noise model (0=none, 1=Amiet based model, 2=Full
formulation) (default=0)

stall_separation Stall separation definition.
1. Stall separation (1=tabulated and given in bldata_filename,
2=use dynamic stall model, 3=forced separation location)
(default=1)
2. Forced separation location (x/C[-]: if positive on suction side,
if negative on pressure side)

- 77

Obl. Command name Explanation
tip_noise 1. Tip noise model (0=none, 1=not implemented yet!!!)

(default=0)
loading_noise 1. Loading-thickness noise model (0=none, 1=based on tabulated

Cl, 2=based on Cp distribution from tabulated data, 3=based on
Cl from HAWC2 aerodynamics) (default=0)
This model does not work with noise_mode=4.

loading_data_filename 1. Filename incl. relative path defining tabulated input data for
loading-thickness noise.

* xyz_observer Position of observer in global reference system.
1. x [m]
2. y [m]
3. z [m]
More than one observer is allowed (but must be <256).

output_filename 1. Filename incl. relative path for output log file.

12.5 Sub command block – bemwake_method

Parameters used to calculate the steady state induction and dynamic induction. If not included
defaults parameters are automatically used.

Obl. Command name Explanation
nazi 1. Number of azimuthal points in the induction grid. A high

number increased accuracy but slow down the simulation time.
Default is 16.

fw Dynamic time constants and mixing ratio contribution for the far
wake part of the induction.
1. Mixing ratio, default is 0.4153
2. :3 (poly. coef. for r/R sensitivity) default=0.0
3. :2 (poly. coef. for r/R sensitivity) default=-0.1667
4. :1 (poly. coef. for r/R sensitivity) default=0.0881
5. :0 (poly. coef. for r/R sensitivity) default=2.0214

nw Dynamic time constants and mixing ratio contribution for the
near wake part of the induction.
1. Mixing ratio, default is 0.5847
2. :3 (poly. coef. for r/R sensitivity) default=0.0
3. :2 (poly. coef. for r/R sensitivity) default=-0.7048
4. :1 (poly. coef. for r/R sensitivity) default=0.1819
5. :0 (poly. coef. for r/R sensitivity) default=0.7329

a-ct-filename Filename for a user defined relation between a and ct.
a_ct_table Filename for a user defined table of axial induction factor 0

and the thrust coefficient �) . This will overwrite the default
polynomial relationship between 0 and �) . This flag is not able
to be used together with a-ct-filename. The data format for the
file is described in Section. 12.18.

custom_tiploss Filename for a user defined tip/root loss factor.
Filestructure: One number in the first line gives the number of
radial stations specified in the file. Following lines have two
numbers: non-dimensional radius 0 < A/' < 1 followed by
tip/root loss factor 0 < �2DBC>< < 1.

78 -

Obl. Command name Explanation
It is applied on the 0 = 5 (�)) relation as 0 = 5 (�) /(��2DBC><))
where � is the regular tip loss factor. This allows e.g.
implementation of a user defined root loss model by specifying
�2DBC>< going from 0 at the root towards 1 at or before the tip.
In that way �2DBC>< and the regular tiploss factor � can be used
together.

radial_induc 1. Radial induction model (0=none , 1=Radial induction model
described in Section 2.8 of [5])(default=0)

only_lift_for_momentum-
_balancing

(0=default, both lift and drag forces contribute to momentum
balancing; 1=only lift force contributes to momentum balancing)

wake_rot_effect (0=default, exclude the pressure drop due to the wake rotation
effect in the wake; 1=include the pressure drop due to the wake
rotation effect in the wake. This is described in Section 3.2 and
3.3 of [13])

tip_loss_sectional_angle (0=default, use the flow angle seen in the rotor-polar coordinate
system (inflow angle) to calculate the tip loss factor described
in Section 2.3 of [5]; 1=use the flow angle seen by the section
(angle of attack plus deformed twist angle) to calculate the tip-
loss factor. This is described in Section 5.2 of [8]. The results
of using two different methods will be different if the blade has
noticeable out-of-plane geometry.)

vortex_cylinder_model (0=default, do not use vortex cylinder model; 1=use the vortex
cylinder model as a correction to the BEM method. The method
is able to model blade non-planar effects on the aerodynamic
induction. The method is described in [8]. Since the radial
induction is calculated from the vortex cylinder model, the flag
of radial_induc will not be functioning.)

12.6 Sub command block – nearwake_method

The near wakemodel implementation in HAWC2 couples the lifting line theory based near wake
model for trailed vorticity with the modified HAWC2 BEM as a far wake model. Inherently
included in the trailed vorticity computations are the influences of the tip and root vortices;
a ’root-loss’ model is otherwise not included in HAWC2. The model is described in [14, 15]
and has been shown to improve the dynamic blade loading in the presence of turbulence, blade
vibrations and flap actuations.

In case of strong load gradients on the blade due to for example flaps at fixed angle or other
aerodynamic devices activating the near wake model leads to an improved steady state load
distribution.When used in this case with a prescribed point distribution along the blade (defined
in the ae-file) then sudden changes in the point density (for example close to the flap) should
be avoided as they can lead to numerical instability of the model. As with any vortex model,
care should be taken when operating in deep stall conditions, such as extreme yaw conditions
in standstill.

Since HAWC2 13.0 the near wake model is able to model the effects of blade sweep on the
induced velocity at the blade [6, 7, 16]. The influence of non-straight bound vortex can and
should also be included. However, for the purpose of backwards compatibility, the model
extension for swept blades is not enabled by default.

- 79

Obl. Command name Explanation
only_one_nw_function Dynamic accuracy, see Section 6 in [15] for details. (0=2

exponential functions used; 1=default, 1 exponential function
used: minimally lower accuracy but almost twice as fast)

only_axial_nw (0=default, near wake model used for both axial and tangential
induction; 1= near wake model used for axial induction only)

fast_nwm (0=full iteration loop of the near wake model; 1= default, helix
angle and vortex filament length fixed during iteration loop,
almost identical results, much faster)

fixed_kfw kfw (0<kfw<1). This coupling factor will be used and is fixed
during the computation. Not using this command means the
coupling factor will be computed automatically and dynamically
updated each time step (default, see Section 5 in [14] for details)

r_core r_core determines the vortex core radius (default=0: no vortex
core is used). The implementation is in beta version and not
validated.

nw_sweep (0=default, use the near-wake model that does not consider the
effects of blade sweep on the aerodynamic induction. [14, 15];
1=use the near-wakemodel that models the effects of blade sweep
on the aerodynamic induction. The extension to the model is
described in [6, 7])

nw_curved_bound This flag only works if nw_sweep=1. (1=default, includes the
curved bound vortex effect. [7]; 0=does not include the curved
bound vortex effect. Ignoring the curved bound vortex will lead
to wrong results for swept blades, see [7, 16])

12.7 Sub command block – vawtwake_method

VAWT dynamic inflow parameters. The model implemented in the code is described in [17].
The model uses two parallel first order filters for the near- and far-wake induction, respectively.
This is similar to the BEM dynamic inflow model. However for the VAWT model, the non-
dimensional time constants, which can be given as user defined input as shown in the table
below, are multiplied by the radius of the actuator cylinder divided by the free wind speed.
Currently there is no dependency of the time constants on distance from the blade tip or on
average induction factor implemented in the VAWT dynamic inflow model.

Obl. Command name Explanation
nazi 1. Number of azimuthal points in the induction grid. A high

number increased accuracy but slow down the simulation time.
Default is 36.

fw Dynamic time constants and mixing ratio contribution for the far
wake part of the induction.
1. Mixing ratio, default is 0.4
2. :3 dummy value, currently not used in the model
3. :2 dummy value, currently not used in the model
4. :1 dummy value, currently not used in the model
5. :0 fw time constant, default=2.0

nw Dynamic time constants and mixing ratio contribution for the
near wake part of the induction.
1. Mixing ratio, default is 0.6
2. :3 dummy value, currently not used in the model
3. :2 dummy value, currently not used in the model
4. :1 dummy value, currently not used in the model

80 -

Obl. Command name Explanation
5. :0 nw time constant, default=0.5

12.8 Data format for the aerodynamic layout

The format of this file which in the old HAWC code was known as the hawc_ae file is changed
slightly for the HAWC2 input format. The position of the aerodynamic center is no longer an
input value, since the definition is that the center is located in �1/4 with calculated velocities in
�3/4.

- 81

Figure 7: Illustration of aerodynamic centers �1/4 and �3/4

The format of the file is specified in the following two tables

Line number Description
1 #1: Nset, Number of datasets present in the file. The format of

each data set can be read below. The datasets are repeated without
blank lines etc.

2 #1: Set number. #2: Nrows, Number of data rows for this set
3..2+Nrows Data row according to Table 27

Table 26: Format of main data structure for the aerodynamic “_ae” blade layout file

The content of the colums in a data row is specified in the table below.

Column Parameter
1 r, curved length distance from main_body node 1 [m]
2 chord length [m]
3 thickness ratio between profile height and chord [%]
4 Profile coefficient set number
(5) Optional column.When present, it includes a dynamic stallmodel

selector. It is then possible to bypass or change dynamic stall
model for different part of the blade. Numbers are identical to the
one used in the command “aero dynstall_method”

Table 27: Format of the data rows for the aerodynamic “_ae” blade layout file

12.9 Example of an aerodynamic blade layout file

1 1 Number of datasets in the file.

2 1 25 Set nr, nrows.

3 0 2.42 100 1 Radius[m] chord[m] thick[%] PC [-]

4 1.239 2.42 100 1

5 1.24 2.42 99.9 1

6 3.12 2.48 96.4 1

7 5.24 2.65 80.5 1

8 7.24 2.81 65.0 1

9 9.24 2.98 51.6 1

10 11.24 3.14 40.3 1

11 13.24 3.17 32.5 1

12 15.24 2.99 28.4 1

13 17.24 2.79 25.6 1

14 19.24 2.58 23.7 1

82 -

15 20.44 2.46 22.8 1

16 23.24 2.21 20.9 1

17 25.24 2.06 20.0 1

18 27.24 1.92 19.4 1

19 29.24 1.8 19.0 1

20 31.24 1.68 18.7 1

21 33.24 1.55 18.6 1

22 35.24 1.41 18.3 1

23 37.24 1.18 17.9 1

24 38.24 0.98 17.3 1

25 39.24 0.62 16.3 1

26 39.64 0.48 15.7 1

27 40.00 0.07 14.8 1

12.10 Data format for the profile coefficients file

The format of this file which in the old HAWC code was known as the hawc_pc file has not
been changed for the HAWC2 code.

The format of the file is specified in the following two tables

Line number Description
1 #1: Nset, Number of datasets present in the file. The format of

each data set can be read below. The datasets are repeated without
blank lines etc.

2 #1: Nprofiles. Number of profiles included in the data set. There
must be more than 1 Nprofiles. First profile is the thinnest, last
profile is the thickest (continously increasing order).

3 #1: Profile number. #2: Nrows. #3: Thickness in percent of chord
length

4..3+Nrows Data row according to Table 29

Table 28: Format of main data structure for the profile coefficients file

The content of the columns in a data row is specified in table below.

Column Parameter
1 U, angle of attack [deg]. Starting with -180.0, ending with +180.0
2 �; lift coefficient [-]
3 �3 drag coefficient [-]
4 Cm moment coefficient [-]

Table 29: Format of the data rows for the profile coefficients file

12.11 Example of the profile coefficients file “_pc file”

1 1 Airfoil data for the nrel 5 mw turbine

2 8

3 1 127 17 DU17 airfoil with an aspect ratio of 17. Original -180 to 180deg

4 -180.00 0.000 0.0198 0.0000

5 -175.00 0.374 0.0341 0.1880

6 -170.00 0.749 0.0955 0.3770

7 -160.00 0.659 0.2807 0.2747

8 -155.00 0.736 0.3919 0.3130

9 -150.00 0.783 0.5086 0.3428

10 -145.00 0.803 0.6267 0.3654

- 83

11 -140.00 0.798 0.7427 0.3820

12 -135.00 0.771 0.8537 0.3935

13 -130.00 0.724 0.9574 0.4007

14 -125.00 0.660 1.0519 0.4042

15 -120.00 0.581 1.1355 0.4047

16 -115.00 0.491 1.2070 0.4025

17 -110.00 0.390 1.2656 0.3981

18 -105.00 0.282 1.3104 0.3918

19 -100.00 0.169 1.3410 0.3838

20 -95.00 0.052 1.3572 0.3743

21 -90.00 -0.067 1.3587 0.3636

22 -85.00 -0.184 1.3456 0.3517

23 -80.00 -0.299 1.3181 0.3388

24 -75.00 -0.409 1.2765 0.3248

25 -70.00 -0.512 1.2212 0.3099

26 -65.00 -0.606 1.1532 0.2940

27 -60.00 -0.689 1.0731 0.2772

28 -55.00 -0.759 0.9822 0.2595

12.12 Data format for the flap steady aerodynamic input (.ds file)

This file contains the pre-processed steady data required by the ATEFlap dynamic stall model.
Steady lift, drag and moment coefficients are given as function of angle of attack and flap
deflection, together with the fully separated and fully attached lift, and the separation function
values required by the Beddoes-Leishmann dynamic stall model. The input file can be generated
automatically through an external pre-processing application, as for instance the “Preprocessor
for ATEFlap Dynamic Stall Model, v.2.04”. Please refer to the application documentation for
further details.

The format of the file is specified in the following two tables:

Line number Description
1 Free for comments
2 Free for comments
3 #1: Aoa0 [rad]. Angle of attack returning a null steady lift
4 Free for comments
5 #1: dCl/dAoa [1/rad]. Gradient of the steady lift function with

respect to angle of attack variations
6 Free for comments
7 #1: dCl/dBeta [-]. Gradient of the steady lift function with respect

to flap deflection variations
8 Free for comments
9 #1: Nrows. Total number of the following data-rows.
10...9+Nrows Data rows, as specified in following table.

Table 30: Format of main data structure for the .ds flap steady aerodynamic input file

The content of the columns in a data row is specified in table below.

Column Parameter
1 U, Angle Of Attack [deg]. Starting with -180.0, ending with

+180.0. External loop (changes value after going through all the
beta flap deflection values, i.e. 100 rows)

2 Beta, flap deflection. Starting from -49 to +50. Internal loop
(changes at every data row)

3 �; st. Steady lift coefficient [-]

84 -

Column Parameter
4 �; att. Fully attached lift coefficient [-]
5 �; fs. Fully separated lift coefficient [-]
6 �3 drag coefficient [-]
7 �< moment coefficient [-]
8 f . Steady value of the separation function [-]

Table 31: Format of the data rows for the .ds flap steady aerodynamic input file

12.13 Example of a .ds flap steady aerodynamic input file

1 Input file for Flap dyn.stall model. Generated with Delphi preprocessor

2 .Linear Region: Aoa Cl0 [rad]:

3 -0.06523855

4 .Linear Region: dCl / dAoa [1/rad]:

5 6.60081861

6 .Linear Region: dCl / dBeta [1/deg]:

7 0.0435375

8 . Polars: 1.Aoa | 2.Beta | 3.Clst | 4.Cl Att | 5.Cl fs | 6.Cd | 7.Cm | 8.F

9 36100

10 -180 -49 -0.22013 -20.5241432 -0.22013 0.0199118108 0.0451649986 0

11 -180 -48 -0.22013 -20.5241432 -0.22013 0.0199118108 0.0451649986 0

12

13 -180 +50 0.21096 -20.088768 0.21096 0.0199443996 -0.0431930013 0

14 -179 -49 ...

15 -179 -48 ...

16

17 +180 +50 ...

12.14 Data format for the user defined a-ct relation

The format of the file is specified in the following two tables

Line number Description
1. nrad interp Nrad interpolation. Interpolation method can either be “linear”

or “akima”
2. nazi Data row according to Table 33

Table 32: Format of main data structure for the a-ct relation file

The content of the columns in a data row is specified in table below.

Column Parameter
1 non-dim radius r/R
2 :1 polynomium coef
3 :2 polynomium coef
4 :3 polynomium coef
5 :4 polynomium coef

Table 33: Format of the data rows for the a-ct relation file

- 85

12.15 Data format for the trailing edge noise model (bldata)

This file contains the values required by the aero_noise module. Several different parameters
are given as a function of angle of attack, relative thickness, andReynolds number. The boundary
layer data can be created from results generated with XFOIL or a CFD software such as
EllipSys2D.

The format of the file is specified in the following two tables:

Line number Description
1 – 4 Free for comments
5 #1: BLDataType [-]. Type of boundary-layer data (1=Xfoil,

2=CFD). #2: #H [-] and number of points for BL data. #H must
be 1 for XFOIL data.

6 Free for comments
7 #1: Number of thicknesses [-].
8 Free for comments
9 #1: Relative thickness 1 [%]. First relative thickness value
10 Free for comments
11 #1: Number of Reynolds numbers at thickness 1.
12 Free for comments
13 #1: First Reynolds number at thickness 1 [-].
14 Free for comments
15 #1: Number of angles of attack for Reynolds number 1, thickness

1 [-].
16 #1: First angle of attack for for Reynolds number 1, thickness 1

[deg]
17 Data row as specified in the following table for the suction side.
18 Data row as specified in the following table for the pressure side.
19...end Subsequent data rows and specification of other thicknesses,

Reynolds numbers, and angles of attack.

Table 34: Format of main data structure for the bldata input file for trailing-edge noise model

The content of the columns in a data row is specified in table below.

Column Parameter
1 *4, velocity at edge of boundary layer normalized by inflow

velocity*0 [-].
2 � 5 , friction coefficient [-].
3 3?/3- , pressure gradient [-].
4 X, boundary layer thickness normalized by chord [-].
5 X∗, boundary-layer displacement thickness normalized by chord

[-].
6 \, boundary-layer momentum thickness normalized by chord [-].
7 Gtr, boundary-layer transition location normalized by chord [-].
8 Gsep, boundary-layer separation location normalized by chord [-].
9 (CFD only) H3 (1), distance from wall for point 1 normalized by chord [-].
10 (CFD only) *H (1), velocity at point 1 normalized by inflow velocity [-].
11 (CFD only) :) (1), turbulence kinetic energy at point 1 normalized by*2

0 [-].
12 (CFD only) n (1), turbulence dissipation at point 1 normalized by a · (*0/2)2

[-], where a is the kinematic viscosity and 2 is the chord.
13... (CFD only) CFD parameters for other locations on the profile.

86 -

Column Parameter

Table 35: Format of the data rows for the boundary layer data file for the trailing edge noise
model

12.16 Example of a trailing-edge noise model file (bldata)

1 # Input (Boundary Layer) data file for aeroload_noise module in HAWC2

2 # Data: Uedge, Cf, dP/dX, Delta, D^star, Theta, X_tr, X_sep [All -]

3 # on suct./pres. sides, Followed by ((Y,U,K_t,Epsi),1,NY) for CFD case

4 # BL data type (1: Xfoil - 2:CFD), NY: Nb. of points for BL data (Must be 1 for Xfoil)

5 2 100

6 # Number of thicknesses:

7 16

8 # New thickness no. 1

9 1.3997E+01 # [% Chord] - At 1,10% Chord: 3.1352E-02 9.4569E-02 [-] ./.Chord

10 # Number of Reynolds numbers (at thickn.no. 1):

11 13

12 # New Reynolds number no. 1 (t/c = 1.40E+01 [%])

13 6.0000E+05 # [-]

14 # Number of angles of attack (at thickn.no. 1 ; at Reyn.no. 1):

15 15

16 -1.0000E+01 # [deg] Angle of attack no. 1 (t/c = 1.40E+01 [%] ; Reyn.= 6.00E+05 [-])

17 9.7959595E-01 5.0024827E-03 1.3876976E+00 1.4695722E-02 1.9646853E-03 ...

18 9.4850973E-01 3.4123155E-04 -3.2128910E-01 7.7950524E-02 3.3317935E-02 ...

19 -6.0000E+00 # [deg] Angle of attack no. 2 (t/c = 1.40E+01 [%] ; Reyn.= 6.00E+05 [-])

20 9.5475774E-01 3.8252693E-03 2.7709756E-01 1.9092268E-02 2.8682055E-03 ...

21 9.1490195E-01 1.6144429E-03 1.4202462E-01 4.0643583E-02 1.2382229E-02 ...

22 ...

23 ...

24 # New thickness no. 16

25 5.8782E+01 # [% Chord] - At 1,10% Chord: 1.1889E-01 3.7350E-01 [-] ./.Chord

26 # Number of Reynolds numbers (at thickn.no. 16):

27 13

28 # New Reynolds number no. 1 (t/c = 5.88E+01 [%])

29 6.0000E+05 # [-]

30 ...

31 # New Reynolds number no. 13 (t/c = 5.88E+01 [%])

32 9.0000E+06 # [-]

33 # Number of angles of attack (at thickn.no. 16 ; at Reyn.no. 13):

34 15

35 ...

36 2.4000E+01 # [deg] Angle of attack no. 15 (t/c = 5.88E+01 [%] ; Reyn.= 9.00E+06 [-])

37 1.7209753E-02 7.9763797E-04 -9.2664372E-01 3.4414559E-03 6.8894715E-03 ...

38 1.2919848E+00 3.6773425E-03 -1.0974971E+01 6.3898121E-03 9.2252539E-04 ...

12.17 Main commandblock – blade_c2_def (for usewith old_htc_structure
format)

In this command block the definition of the centerline of the main_body is described (position
of the half chord). This command shall be used as a main command even though it is only used
together with the aerodynamic module. The reason for this is that it used to submit information
that is usually given in the new_htc_structure format, which is also a main command block.
The input data given with the sec commands below is used to define a continuous differentiable
line in space using akima spline functions. This centerline is used as basis for local coordinate
system definitions for sections along the structure. If a straight line is requested a minimum of
three points of this line must be present.

- 87

Obl. Command name Explanation
* nsec Must be the present before a “sec” command.

1. Number of section commands given below
* sec Command that must be repeated “nsec” times

1. Number
2. x-pos [m]
3. y-pos [m]
4. z-pos [m]
5. \I [deg]. Angle between local x-axis and main_body x-axis
in the main_body x-y coordinate plane. For a straight blade this
angle is the aerodynamic twist. Note that the sign is positive
around the z-axis, which is opposite to traditional notation for
etc. a pitch angle.

12.18 Data format for the user defined a-ct table

Line number Description
1 Nrows, Number of data rows
2..1+Nrows 1. Axial induction factor 0

2. Thrust coefficient �)

Table 37: Format of main data structure for the user defined a_ct_table file

Example:

1 19

2 0.000000 0.000000

3 0.025274 0.100000

4 0.052250 0.200000

5 0.081458 0.300000

6 0.113427 0.400000

7 0.148688 0.500000

8 0.187769 0.600000

9 0.231201 0.700000

10 0.279514 0.800000

11 0.333237 0.900000

12 0.392900 1.000000

13 0.532166 1.200000

14 0.701551 1.400000

15 0.905293 1.600000

16 1.147630 1.800000

17 1.432800 2.000000

18 1.765042 2.200000

19 2.148595 2.400000

20 2.360937 2.500000

Additional comments for best results: We recommend a higher resolution than in this example.
Further, set 0(1) = 0.0 and �) (1) = 0.0. In the table, �) should be in increasing order: 0<=
�) (i)<�) (i+1). The value of 0 and �) should be positive except for the first row. Also provide
extrapolated table until �) =2.5.

88 -

13 Aerodrag (for tower and nacelle drag)

13.1 Main command aerodrag

With this module, it is possible to apply aerodynamic drag forces at a given number of structures.

13.2 Subcommand aerodrag_element

Command block that can be repeated as many times as needed. In this command block
aerodynamic drag calculation points are set up for a given main body.

Obl. Command name Explanation
* mbdy_name 1. Main_body name to which the aerodynamic calculation points

are linked.
(old command body_name
still usable)

* aerodrag_sections 1. Distribution method: (“uniform” only possibility)
2. Number of calculation points (min. 2).

nsec This command must be present before the sec commands.
1. Number of sections given below.

sec This command must be repeated nsec times
1. Distance in [m] along the main_body c2_def line. Positive
directed from node 1 to node “last”.
2. �3 drag coefficient (default=1.0)
3. Width of structure (diameter)

update_states Logical parameter that determines whethe the movement of the
structure is included or not.
1. parameter (1=states are updated (default), 0=not updated)

By choosing the uniform distribution, HAWC2 places = equidistant calculation points on the
main body, from the first until the last node. The distributed aerodynamic drag is computed for
each calculation point as

5G =
1
2
d+2

G 2�3sgn(+G)

5H =
1
2
d+2

H 2�3sgn(+H)

5I = 0

<G = 0

<H = 0

<I = 0

with d the air density, 2 the interpolated width at the calculation point and �3 the interpolated
drag coefficient at the calculation point.+G and+H are the relative wind speed in the aerodynamic
coordinate system at the calculation point, optionally including the structural one. The wind
speed is evaluated only at the first iteration of each time step, while the structural one is always
updated. The aerodynamic drag is not applied in the first 5 seconds of the simulation. Between
5 and 10 seconds it smoothly goes from 0 to 100%, where it remains until the end of the
simulation.

- 89

14 Hydrodynamics

14.1 Main command block - hydro

In this command block hydrodynamic forces calculated using Morison’s formula is set up.

14.2 Sub command block – water_properties

Obl. Command name Explanation
* gravity 1. Gravity acceleration (used for calculation of buoyancy forces).

Default = 9.81 m/s2

* mudlevel 1. Mud level [m] in global z coordinates.
* mwl 1. Mean water level [m] in global z coordinates.
* rho 1. Density of the water [kg/m3]. Default=1000

wave_direction 1. Wave direction [deg]. Direction is positive when the waves
come forward from the right when looking towards the wind at
default conditions.

current 1. Current type (0=none (default), 1=constant, 2=power law
* (I) = *0 ((<D3;4E4; −<F; − I)/(<D3;4E4; −<F;))U where
U ≥ 0, and I refers to the water depth ranging from 0 at the
surface to <D3;4E4; − <F; at the mudlevel. See also figure 8.
2. Current velocity at mwl, D0
3. type parameter. If type=2 then parameter is U.
4. Current direction relative to wave direction [deg]. Positive
direction if current comes from the right looking towards the
incoming waves.

water_kinematics_dll 1. Filename incl. relative path to file containing water kinematics
dll (example ./hydro/water_kin.dll)
2. String sent to initialization of dll. This is typical the name of a
local inputfile of the dll.

0 2 4 6 8 10

current velocity [m/s]

0

20

40

60

80

100

z
(d

ep
th

)
[m

]

Power law hydro current velocity profile

α = 0.0

α = 0.5

α = 1.0

α = 2.0

Figure 8: Hydrodynamic water current power law velocity profile for various values of U with
<F; = 0 and <D3;4E4; = 100.

90 -

14.3 Sub command block – hydro_element

Command block that can be repeated as many times as needed. This command block set up
hydrodynamic calculation points and link them to a main_body.

Obl. Command name Explanation
* body_name or mbdy_name 1. Main_body name to which the hydrodynamic calculation

points are linked.
* hydrosections 1. Distribution method of hydrodynamic calculation points.

Options are:
“uniform” nnodes. Where uniform ensures equal distance of the
calculation points. nnodes are number of calculation points.
“auto” nint. Here calculations points are chosen as the postions of
the structural nodes and the hydro dynamic input section given by
the sec command. The parameter nint is a refinement parameter
given nint extra calculation points in between the other points.

* sec_type Type of cross section (1=circular, 2=general). Please note
that sec_type should always appear before the nsec and sec
commands.

* nsec This command must be present before the sec commands
1. Number of sections given below

* sec This command must be repeated nsec times and is different for
each section type.
Section type 1 – circular:
1. Relative distance along the main_body c2_def line. Positive
directed from node 1 to node “last”.
2. �0 added mass coefficient (default=1.0)
3. �3 drag coefficient (default=1.0)
4. Cross sectional area [m2]
5. Cross sectional area to which �0 is related. (default=area for
circular sections) [m2]
6. Width of construction perpendicular to flow direction [m]
7. drdz gradient(optional). For calculating the buoyancy also for
conical sections the gradient expressing the change in radius
with change of distance along the main_body c2_def line. Only
important when buoyancy forces are included.
8. Axial drag �3 coefficient for concentrated force contribution
(optional). Drag area is circular area defined by the local width.
Contribution is quadratic regarding water velocity.
9. Axial added mass �0,0G80; coefficient for concentrated
force contribution (optional). Force is computed (in each
hydro element section with �0,0G80; different than 0) as:
d+A4 5 �0,0G80; (F0C4A_022−1>3H_022), with+A4 5 taken as half
volume of sphere defined by the local width as diameter.
10. Axial drag �3 coefficient for concentrated force contribution
(optional). Drag area is circular area defined by the local width.
Contribution is linear regarding water velocity.
11. Internal cross sectional area for flooded members [m2]
(optional). 0=member is not flooded.
12. Torque friction coefficient Cf (optional). For rotating
cylinders around local z-direction.
"I =

1
16 dc�

4l2Cf
13. Magnus coefficient (optional).
�"06=DB = �"06=DBd+2DAA4=C2cA2l

- 91

Obl. Command name Explanation
and where A is the corresponding radius for the given cross
sectional area (input 4), and �<06=DB is the Magnus coefficient
that dependends on parameters such as shape, material and
flow regime (for example ratio between rotational and current
velocity).

Section type 2 – general:
1. relative distance from node 1 to 2
2. Cross sectional area [m2]
3. Area radius of gyration [m] around x-axis '8G
4. Area radius of gyration [m] around y-axis '8H
5. Hydro mass coefficient in x-direction �0,G
6. Hydro mass coefficient in y-direction �0,H
7. Drag coefficient in x-direction �3,G
8. Drag coefficient in y-direction �3,H
9. Volume per length in x-direction
10. Volume per length in y-direction
11. Reference volume to which �0 is referenced
12. Reference width for �3 and �0,0G80;
13. axial drag coefficient (quadratic) �3,0G80;,@D03
14. axial hydro mass coefficient �0,0G80;
15. axial drag coefficient (linear) �3,0G80;

buoyancy 1. Specification whether buoyancy forces are included or not.
0=off (default), 1=on (remember to define the 7th parameter in
the sec input line.

update_states 1. Specification whether the hydrodynamic sections are updated
in time with respect to pos, vel, acc and orientations, or simply
considered to remain fixed. 0=not updated, 1=updated (default)

update_kinematics 1. Specification whether the water kinematics are updated during
iterations or only once per time step. 0=only updated once per
time step, 1=full update (default).

Here is an example of this written into the htc-input file.

1 begin HYDRO_ELEMENT ;

2 mbdy_name cylinder ;

3 buoyancy 1 ;

4 update_states 1 ; (0: no dynamic interaction, 1: fully coupled solution

5 hydrosections auto 4 ; dist, of hydro calculation points from 1 to nsec

6 nsec 2; z Ca Cd A Aref width dr/dz Cd_a_(quad) Ca_a Cd_a_lin Aif

7 sec 0.0 1 1 3.404 3.404 2.082 0.0 0.0 0.0 0.0 3.023;

8 sec 5.0 1 1 3.404 3.404 2.082 0.0 0.0 0.0 0.0 3.023;

9 end HYDRO_ELEMENT ;

This example shows a flooded cylindrical element (l=5 m, d= 2,082 m and t=60mm).

14.4 Description of the water_kinematics_dll format.

1 subroutine init(inputfile,t0,t1,dt) implicit none
2 character*(*) :: inputfile

3 real*8 :: t0 ! start time for simulation

4 real*8 :: t1 ! stop time for simulation

5 real*8 :: dt ! time increment

6 !DEC$ ATTRIBUTES DLLEXPORT, ALIAS:'init'::init

92 -

7 end subroutine init

8

9 !---

10 subroutine set_new_time(time)

11 implicit none
12 !DEC$ ATTRIBUTES DLLEXPORT, ALIAS:'set_new_time'::set_new_time
13 real*8 :: time

14

15 end subroutine set_new_time

16

17 !---

18 subroutine get_sea_elevation(posxy_h,elevation)

19 implicit none
20 !DEC$ ATTRIBUTES DLLEXPORT, ALIAS:'get_sea_elevation'::get_sea_elevation
21 real*8,dimension(2) :: posxy_h ! horizontal position coordinates

22 real*8 :: elevation ! water height above mean water level, positive upwards

23 end subroutine get_sea_elevation

24

25 !---

26 !DEC$ ATTRIBUTES DLLEXPORT, ALIAS:'get_kinematics'::get_kinematics
27 real*8,dimension(3) :: pos_h, vel_h, acc_h

28 real*8 :: pres

29 end subroutine get_kinematics

14.5 User manual to the standard wkin.dll version 2.8.3

The wkin.dll which is delivered along with the HAWC2 code needs a separate inputfile. The
format for these inputs are the same as the HAWC2 main inputfile with usage of begin..end
clauses, semi colon separators, exit command etc. Command words are described below.

All commandwordswritten below has to be included in an begin .. end clause calledwkin_input:

begin wkin_input;

...

end wkin_input;

exit;

Version info:

1.0 TJUL Basic edition by TJUL

1.1 ANMH Wave field can be read by file and used directly through fft

conversion

1.2 TJUL Directional spreading included

1.3 ANMH Bug corrected regarding read on seed number using iregular

waves

1.4 TJUL Pierson-Moscowitz spectrum added as option

Stream function wave added

Possible pre processing of wave field to speed up simulation

time and enable many more coeffients

1.5 TJUL Bug in stream function wave. Static pressure was included �

now removed

1.6 TJUL Bug in stream fuction wave. lateral position was applied

instead of vertical in kinematics look-up!!!

1.7 TKIM New wave format for precalculated (high order) wave fields

1.8 ANMH Update in deterministic iregular waves+bugfix

1.9 TJUL New option for white noise wave exitation

2.0 TJUL Bug fix of version 1-9. Version 1-9 had some debug

statements included that could meas up the time.

2.1 ANMH Ported to intel

- 93

ANMH Correction for high wave numbers in deterministic irregular

waves

TJUL Embedded stream function wave, phase velocity used insted

of group velocity with respect to pregenerated waves

2.2 TJUL Bug fix. Tightended criteria for jonswap spectrup min-max.

Use of real*8 in all internal memory related variables

2.3 TJUL Bug fix. PM spectrum ireg waves

2.4 TJUL Update so embedded stream function wave is ensured to be inside the requested time interval

2.5 TJUL Bugfix in randomnumber generator. Problem occured in version 2.1 until 2.4

SHFE Bugfix in embedded steam function wave

2.6 TJUL Embedded stream function wave updated for manual input of Tp

2.7 ANMH Bugfix regarding embedded stream function wave

SHFE Bugfix (stretching first, then embed stream function wave)

2.8 SHFE New feature to write out the pregenerated wave field

SHFE Change PM spectra from Tz type to Tp type

SHFE Solve the memory issue when pregenerate large scale wave field

SHFE Fix issue with long filenames

2.8.3 SHFE McCamy Fuchs correction is applied on water particle acceleration

14.6 Main commands in the wkin.dll

Obl. Command name Explanation
* wavetype 1. Type of wave used. (0=regular airy, 1=irregular airy,

2=deterministic irregular airy, 3=regular stream function,
4=general wavemode format)

* wdepth 1. Water depth [m]. Positive value.

14.7 Sub command reg_airy

Command that need to be present if the wavetype equals 0 in the main command.

Obl. Command name Explanation
* stretching 1. Wheeler stretching of waves. (0=off, 1=on)
* wave 1. Wave height H [m]

2. Wave period T [s]
3. Wave phase shift [deg] (optional)

ignore_water_surface Allow the lookup of the wave kinematics above the waterline if
requested in the output.

14.8 Sub command ireg_airy

Command that need to be present if the wavetype equals 1 in the main command.

Obl. Command name Explanation
* stretching 1. Wheeler stretching of waves. (0=off, 1=on)
* spectrum 1. Base spectrum used. (1=jonswap, 2= Pierson Moscowitz)

mccamyfuchs 1. McCamy Fuchs correction on water particle acceleration.
(0=off, 1=on)
2. Representative radius [m]

jonswap Jonswap spectrum formulation
1. Significant wave height �B [m]
2. Wave period)? [s]

94 -

Obl. Command name Explanation
3. W parameter [-]. A typical value is 3.3

pm Pierson-Moscowitz spectrum
1. Significant wave height �B [m]
2. Wave period)? [s]

wn White noise.
1. Target variance level [<2]
2. 50, minimum frequency
3. 51, maximumn frequency

* coef 1. Number of coefficients. Normally 200 are used even though
higher values are recommended in general. A speed issue...
2. Seed number. A positive integer value.
3. Phase shift for all wave components [deg] (optional).

spreading 1. Spreading model. (0=none, 1= 2B model also referred to as
 = model)
2. Spreading parameter. If model=1 the parameter is s, a positive
integer. The higher value, the less spreading.

pregen Pre-generation of a wave field (default is on). Using this option
the irregular wave field is calculated during initialization phase
and only table look-up is done during the time simulation phase.
Very fast and still accurate.
1. Pregen option. (0=traditional approach (slow), 1=pregenerated
wave field used (default))

embed_sf Embed stream function wave in time series at the time when the
otherwise largest wave occurs. The wave kinematics is blended
into the iregular waves before and after.
1. Wave height H [m]
2. Wave period T [s]. Default = Peak wave period)? . (optional)
3. Truncated transition period T0 [s]. Default = 0. (optional)

14.8.1 Sub sub command pregen_field

Command that used to define the resolution of the pregenerated wave field if this feature is
activated where the pregen equals to 1 (default). The whole command block is optional.

Obl. Command name Explanation
wave_filename 1. File name for writing (file not existed) or reading (file existed)

pregenerated wave field.
y_resolution 1. Field dimensions in lateral direction. Default is 1.

2. Lateral grid length. Default is 0.
t_resolution 1. The time step used for the pregenerated wave field. Default =

1/10 of maximum wave period.
z_resolution 1. Field dimensions in vertical direction. Default is 10 points in

z direction.
x_range 1. extra simulated wave train in meters before and after requested

time interval. Default is 100 m.

14.9 Sub command det_airy

Command that need to be present if the wavetype equals 2 in the main command. This command
is used when water kinematics needs to be calculated based on a measured elevation time series.

- 95

Obl. Command name Explanation
* file 1. File name for measured wave elevation.
* nsamples 1. Number of lines present in wave elevation file
* nskip 1. Number of lines to skip before reading of wave elevation file
* columns 1. Column number for time sensor in file.

2. Column number for wave elevation in file.
stretching 1. Wheeler stretching of waves. (0=off, 1=on (default))

* cutoff_frac 1. Fraction of total energy which is discarded in the low and high
frequency ranges. Default 1E-5

pregen Pre-generation of a wave field (default is on). Using this option
the irregular wave field is calculated during initialization phase
and only table look-up is done during the time simulation phase.
Very fast and still accurate.
1. Pregen option. (0=traditional approach (slow), 1=pregenerated
wave field used (default))

x_range 1. extra simulated wave train in meters before and after requested
time interval. Default is 100 m.

wave_filename 1. File name for writing (file not existed) or reading (file existed)
pregenerated wave field.

14.10 Sub command strf

Stream function wave input.

Obl. Command name Explanation
* wave 1. Significant wave height �B [m]

2. Wave period T [s]
3. Current speed U [m/s]

14.11 Sub command wavemods

Command that need to be present if the wavetype equals 4 in the main command. This command
is used when water kinematics needs to be calculated based on a measured elevation time series.

Obl. Command name Explanation
* datafile_y 1. Name of datafile where wave kinematic data is present for the

horizontal (wave) direction
* datafile_z 1. Name of datafile where wave kinematic data is present for the

vertical direction
* datafile_nd 1. Number of depth locations
* datafile_depth 1. Minimum water depth (m)
* datafile_nt 1. Number of time steps in datafile
* datafile_t0 1. Time for when wave data is extracted in the datafiles
* ncol_y 1. Number of columns in datafile1 (time+eta+vel+acc)
* ncol_z 2. Number of columns in datafile2 (time+vel+acc)

An example of input files with wave kinematics data for the wavemods option is given below.
Please note the following:

• The first 9 lines are general comment lines

• Line 10 lists the relative depths, and the number of relative depths must match datafile_Nd
in the wavemods subcommand

96 -

• Each row starting at Line 12 corresponds to a single time step, and there should be at least
datafile_Nt rows before the end of the file

• The datafile columns correspond to time, eta (the distance between the wave height and
the MSL; not present in the vertical-component input file), datafile_Nd velocities, and then
datafile_Nd accelerations

Example of datafile_y (horizontal wave component):

1 Wave kinematics input to Flex5 Monopile ver. 2.1

2 General comment line

3 Wave load program "WaveKin" ver. 1.0

4 Echo file : Outfile.dat

5 Name of Case

6 Wave Description

7 slope 1:25

8 50 water depth

9 3 No rel. depths N

10 0.000 0.500 1.000

11 T eta u[1]..u[N] a[1]..a[N]

12 0.000 -0.645 -0.022 -0.027 -0.047

-0.018 -0.022 -0.035↩→

13 0.063 -0.659 -0.023 -0.029 -0.049

-0.017 -0.021 -0.032↩→

14 0.126 -0.671 -0.025 -0.030 -0.051

-0.016 -0.020 -0.030↩→

15 ...

Example of datafile_z (vertical wave component):

1 Wave kinematics input to Flex5 Monopile ver. 2.1

2 General comment line

3 Wave load program "WaveKin" ver. 1.0

4 Echo file : Outfile.dat

5 Name of Case

6 Wave Description

7 slope 1:25

8 50 water depth

9 3 No rel. depths N

10 0.000 0.500 1.000

11 T u[1]..u[N] a[1]..a[N]

12 0.000 -0.022 -0.027 -0.047 -0.018

-0.022 -0.035↩→

13 0.063 -0.023 -0.029 -0.049 -0.017

-0.021 -0.032↩→

14 0.126 -0.025 -0.030 -0.051 -0.016

-0.020 -0.030↩→

15 ...

14.12 Wkin.dll example file

1 begin wkin_input ;

2 wavetype 1 ; 0=regular, 1=irregular, 2=deterministic

3 wdepth 220.0 ;

4 ;

5 begin reg_airy ;

6 stretching 0; 0=none, 1=wheeler

7 wave 9 12.6; Hs,T

8 end;

9 ;

10 begin ireg_airy ;

- 97

11 stretching 0; 0=none, 1=wheeler

12 spectrum 1; (1=jonswap)

13 jonswap 9 12.6 3.3 ; (Hs, Tp, gamma)

14 coef 200 1 ; (coefnr, seed)

15 spreading 1 2; (type(0=off 1=on), s parameter (pos. integer min 1)

16 end;

17 ;

18 begin det_airy ;

19 stretching 0; 0=none, 1=wheeler

20 file ..\waves\elevation.dat ;

21 nsamples 32768 ;

22 nskip 1 ;

23 columns 1 5 ; time column, elevation column

24 end;

25 ;

26 begin wavemods;

27 datafile_y ./wavedata/wavekin_y.dat;

28 datafile_z ./wavedata/wavekin_z.dat;

29 datafile_nt 900; number of time steps in file

30 datafile_nd 3; number of relative water depths

31 datafile_t0 50; start time for data extraction

32 datafile_depth 50 ; minimum water depth

33 ncol_y 8; Number of data columns in file

34 ncol_z 7; Number of data columns in file

35 end;

36 end;

37 ;

38 exit ;

98 -

15 Soil module

15.1 Main command block - soil

In this command block soil spring/damper forces can be attached to amain body. The formulation
is performed so it can be used for other external distributed spring/damper systems than soil.

15.2 Sub command block – soil_element

Command block that can be repeated as many times as needed. In this command block the
distributed soil spring/damper system is set up for a given main body.

Obl. Command name Explanation
* mbdy_name 1. Main_body name to which the soil calculation points are

linked.
* datafile 1. Filename incl. relative path to file containing soil spring

properties (example ./soil/soildata.dat)
* soilsections 1. Distribution method: (“uniform” only possibility)

2. Number of section (min. 2).
damping_k_factor 1. Rayleigh kind of damping. Factor the linear stiffness

coefficients are multiplied with to obtain the damping
coefficients. When the factor is 1.0 the vibration is critically
damped for the rigid mainbody connected to the spring and
dampers.

♣ set 1. Set number in datafile that is used.

*) Input commands that must be present

♣) Command can be repeated as many times as desired.

15.3 Data format of the soil spring datafile

In the file (which is a text file) different distributed springs can be defined. Each set is located
after the “#” sign followed by the set number.Within a set the following data needs to be present.

line 1 “spring type” (can be “axial”, “lateral” or “rotation_z”)
line 2 “nrow ndefl” (nrow is number of rows, ndefl is number of deflections (colums)

line 3..
3+nrow

“z_global F(1) F(2),...,
F(ndefl)”

First colum is the spring location (global z coordinate). The
following colums are Force/length at the different deflection
stations. First deflection must be zero. The forces are assumed
symmetrical around the zero deflection.

An example is given below:

1 This is a nonlinear soil spring demonstration file

2 #1

3 lateral (axial/lateral)

4 5 4 nrow ndefl

5 0.0 0.1 0.2 1.0 x1 x2 x3 [m]

6 0.0 0 15 20 500 Z_G F_1 F_2 F_3 F_ndefl [kN/m]

7 10.0 0 15 20 500

8 20.0 0 15 20 500

- 99

9 30.0 0 15 20 500

10 40.0 0 15 20 500

11 #2

12 axial (axial/lateral)

13 5 4 nrow ndefl

14 0.0 0.1 0.2 1.0 x1 x2 x3 [m]

15 0.0 0 150 200 5000 Z_G F_1 F_2 F_3 F_ndefl

[kN/m]↩→

16 10.0 0 150 200 5000

17 20.0 0 150 200 5000

18 30.0 0 150 200 5000

19 40.0 0 150 200 5000

20 #3

21 rotation_z (axial/lateral/rotation_z)

22 5 4 nrow ndefl

23 0.0 0.1 0.2 1.0 x1 x2 x3 [rad]

24 0.0 0 150 200 5000 Z_G M_1 M_2 M_3 M_ndefl

[kNm/m]↩→

25 10.0 0 150 200 5000

26 20.0 0 150 200 5000

27 30.0 0 150 200 5000

28 40.0 0 150 200 5000

100 -

16 External forces

16.1 Main command block – Force

16.1.1 Sub command - Base

This command block can be used to specify a user-defined constant external force and/or
moment on a node on the structure.

Obl. Command name Explanation and parameters
name 1. Name used to reference the force DLL from output sensors.
mbdy 1. Name of mainbody.
node 1. Node number.
force External force in global coordinates

1. Fx [N]
1. Fy [N]
1. Fz [N]

moment External moment in global coordinates
1. Mx [Nm]
1. My [Nm]
1. Mz [Nm]

16.1.2 Sub command - DLL

This command block can be used when a user defined external force is applied to the structure.
The main difference between this DLL format and the normal DLL control interface (used with
external controllers) is that added stiffness is calculated initially leading to a more robust a fast
solution of the coupled system. This force module can with good results be applied for external
equivalent soil-springs or hydrodynamic forces for floating constructions or mooring lines.

Obl. Command name Explanation and parameters
name 1. Name used to reference the force DLL from output sensors.

* filename 1. Filename incl. relative path to the external DLL (example
./dll/force.dll)

dll deprecated alternative to filename
init 1. Name of subroutine in the DLL that is called before the

simulation starts.
2. String passed to the init subroutine.

* update 1. Name of subroutine in the DLL that is called at each time step
to provide the forces and moments.

output 1. Name of subroutine in the DLL that is called at each time step
to send the DLL output in the HAWC2 results file.

output_label 1. Name of subroutine in theDLL that is called at the beginning of
the simulation to label the output channels. Requires the “output”
command.

* mbdy 1. Name of main body to which force DLL is coupled.
* node 1. Node number of main body to which this force DLL is coupled.

16.2 Example of a DLL interface written in fortran90

1 !

2 ! Demonstration of force DLL

- 101

3 !

4 SUBROUTINE DemoForceDLL(time,x,xdot,xdot2,amat,omega,omegadot,F,M)

5 !DEC$ ATTRIBUTES DLLEXPORT::DemoForceDLL

6 !DEC$ ATTRIBUTES ALIAS:'demoforcedll' :: DemoForceDLL

7 ! input

8 DOUBLE PRECISION :: time ! time

9 DOUBLE PRECISION ,DIMENSION(3) :: x ! global pos. of reference node

10 DOUBLE PRECISION ,DIMENSION(3) :: xdot ! global vel. of reference node

11 DOUBLE PRECISION ,DIMENSION(3) :: xdot2 ! global acc. of reference node

12 DOUBLE PRECISION ,DIMENSION(3) :: omega ! angular vel. of ref. node

13 ! (global base)

14 DOUBLE PRECISION ,DIMENSION(3) :: omegadot ! angular acc. of ref. node

15 ! (global base)

16 DOUBLE PRECISION ,DIMENSION(3,3) :: amat ! rotation matrix (body ->

17 ! global)

18 ! output

19 DOUBLE PRECISION ,DIMENSION(3) :: F ! External force in reference

20 ! node (global base)

21 DOUBLE PRECISION ,DIMENSION(3) :: M ! External moment in reference

22 ! node (global base)

23 ! locals

24 LOGICAL, SAVE :: bInit = .FALSE. ! Initialization flag

25 DOUBLE PRECISION :: mass = 0.d0 ! Point mass

26 !

27 ! Initialise on first call

28 IF (.NOT.bInit) THEN
29 bInit = .TRUE.

30 ! Open file and read mass

31 OPEN(10,FILE="DemoForceDLL_mass.dat")
32 READ(10,*) mass

33 CLOSE(10)
34 ENDIF
35 !

36 ! Calc. force

37 F = mass*((/0.d0,0.d0,9.81d0/) - xdot2)

38 M = 0.d0

39 !

40 END SUBROUTINE DemoForceDLL

16.3 Example of a DLL interface written in Lazarus / Pascal

1 library force_dll;

2

3 Type
4 vect = array[0..2] of double;
5 mat = array[0..2,0..2] of double;
6

7 procedure update(var time:double;var x:vect;var xdot:vect;var xdot2:vect;

8 var amat:mat;var omega:mat;var omegadot:vect;

9 var F,M:vect);stdcall;
10

11 // Example of applying a step up force in the x-direction:

12 begin
13 if time < 10 then
14 F[0] := 0.0;

15 if time >= 10 then
16 F[0] := 20000.0;

17 if time >= 20 then
18 F[0] := 40000.0;

19 end;
20

21 exports update;

22

102 -

23 begin
24 writeln('The DLL force_dll.dll is loaded with succes');

25 end.

- 103

17 Output

This command output can either be a main command block or a sub command block within the
hawc_dll command block. In the tables below two special columns are introduced. One is only
option and the other label option.

17.1 Only option

When the check mark is ’yes’ in only option it is possible to use only one of the fields if more
than one sensor was defined through the command. The sensor that is used is determined by the
number following the only command word, see example below.

constraint bearing1 shaft_rot 2 only 2;

If the only command (and the following number) was omitted two sensors was defined; one for
the angle and one for the velocity. With the only command only the velocity sensor is used in
the output since the following number is 2.

17.2 Label option

When the check mark is ’yes’ in only label it is possible to specify a label that is appended to
the sensor description in the sensor list file. Normal text after the # symbol is used as a label.
An example of this could be

dll inpvec 1 1 # This is a dummy label;

In this example the sensor description will be:

DLL : 1 inpvec : 1 This is a dummy label

17.3 Custom sensor name, unit and description

It is also possible to overwrite the name, unit and description of a sensor. This option applies to
all sensors. Names, units and descriptions are specified using the using the $name(), $unit() and
$desc() options, which must be placed after the output line, either before or after the # symbol,
e.g.:

dll inpvec 1 1 # $name(MySensorName) $unit(MySensorUnit) $desc(MySensorDescription);

17.4 Derived sensors

With the $calc() option, the output value of output sensors can be manipulated by various math
operations. This feature can be used e.g. to offset time sensor, or to scale forces from kN to
N, or to do more complex operations. The $calc() must be placed after the output line, either
before or after the # symbol, e.g.

dll inpvec 1 1 $calc(*1000) # This is a dummy label;

The operation string inside $calc() is composed of sets of:

1 Operation key describing the math operation (e.g. ’-’,’+’,’*’,’/’),
2 then a (optional, dependent on operation) number <val>,
3 and then ’=’ character (to separate operations)(this can be omitted for last operation)

104 -

E.g. $calc(-100=*5) added to sensor line x will return (x-100)*5 in the x sensor output.

Other math operations available (other than -+*/) are:

power, $calc(pow<val>) : returns x<val>
signed power, $calc(sgnpow<val>) : returns sign(x) * abs(x<val>)
absolute, $calc(abs) : returns abs(x)
sine, $calc(sin) : returns sin(x)
cosine, $calc(cos) : returns cos(x)
tangens, $calc(tan) : returns tan(x)

17.5 Commands used with results file writing

When the output command is used for output files (the most normal purpose) some information
regarding file name and format needs to be given.

Obl Command Explanation
* filename 1. Filename incl. relative path to outputfile without extension

(example ./res/output)
data_format ASCII or compressed binary output can be chosen. Default is the

ASCII format if nothing is specified.
1. format (’hawc_ascii’=ASCII format,
’hawc_binary’=compressed binary format,
’flex_int’=compressed binary format,
’gtsdf’=General time series data format (hdf5 based compressed
binary),
’gtsdf64’=General time series data format (hdf5 based binary))
2. optional for ’flex_int’, time [s] to subtract from the time
channel.

buffer Buffer size in terms of time steps. When the buffer is full the data
are
written to data file. Only used together with the ’hawc_ascii’,’
gtsdf’ and ’gtsdf64’ formats. Default is 3000 time steps
1. 1. buffer size

deltat Time interval between outputs [s]. If ’deltat’ is smaller than
simulation time step, output is made each time step.

time Time start C0 and stop C1 for output is defined. Default is the entire
simulation length if nothing is specified.
2. C0
3. C1

17.6 File format of HAWC_ASCII files

Results are written to an ascii formatted data file with the name assigned to the filename variable
(eg. filename ./res/resfil). The data file will have the extension .dat as a standard. The description
of the sensors in the data file is given in another textfile with same filename as the data file but
the extension .sel. An example could be: ./res/resfil.dat and ./res/resfil.sel.

In the .sel-file, line numer 9 specifies the following parameters: Number of scans, Number of
sensors, Duration of output file, Data format (ASCII/BINARY). Example:

10 96 20.000 ASCII

From line number 13 and onwards, the sensors are specified with the following information:
Sensor number, Variable description, unit, Long description. Example:

- 105

5 bea1 angle_speed rad/s pitch1 angle speed

Full example of the .sel file:

1 __

2 Version ID : HAWC2MB 4.3w

3 Time : 14:23:28

4 Date : 22:11.2006

5 __

6 Result file : ./res2_rev0/case41c_nohydro.dat

7 __

8 Scans Channels Time [sec] Format

9 4500 199 90.000 ASCII

10

11 Channel Variable Description

12

13 1 Time s Time

14 2 bea1 angle deg shaft_rot angle

15 3 bea1 angle_speed rpm shaft_rot angle speed

16 4 bea1 angle deg pitch1 angle

17 5 bea1 angle_speed rad/s pitch1 angle speed

18 6 bea1 angle deg pitch2 angle

19 7 bea1 angle_speed rad/s pitch2 angle speed

20 8 bea1 angle deg pitch3 angle

21 9 bea1 angle_speed rad/s pitch3 angle speed

22 __

17.7 File format of HAWC_BINARY files

In this file format results are written to a binary unformatted data file with the name assigned
to the filename variable (eg. filename ./res/resfil). The data file will have the extension .dat
as a standard. The description of the sensors in the data file is given in another textfile with
same filename as the data file but the extension .sel. An example could be: ./res/resfil.dat and
./res/resfil.sel.

The data are scaled to standard 2-byte integers, with a range of 32000 using a scalefactor. The
scalefactor is determined for each output sensor

B =
max(|max|, |min|)

32000
where max and min are the largest and lowest number in the original data for the sensor. These
scale factors are written in the end of the accompanying .sel file. When converting a binary
number to the actual number its just a matter of multiplying the binary numbers of a sensor
with the corresponding scalefactor.

In the accompanying text file, which has the extension .sel-file, information of the content in
the datafile is stored. In line number 9 the following parameters are specified: Number of scans,
Number of sensors, Duration of output file, Data format (ASCII/BINARY). Example:

10 96 20.000 ASCII

From line number 13 and onwards, the sensors are specified with the following information:
Sensor number, Variable description, unit, Long description. Example:

5 bea1 angle_speed rad/s pitch1 angle speed

From line number 9+nsensors+5 and upwards the scalefactors are written.

Full example of the .sel file:

106 -

1 __

2 Version ID : HAWC2MB 4.3

3 Time : 14:23:28

4 Date : 22:11.2006

5 __

6 Result file : ./res2_rev0/case41c_nohydro.dat

7 __

8 Scans Channels Time [sec] Format

9 4500 9 90.000 ASCII

10

11 Channel Variable Description

12

13 1 Time s Time

14 2 bea1 angle deg shaft_rot angle

15 3 bea1 angle_speed rpm shaft_rot angle speed

16 4 bea1 angle deg pitch1 angle

17 5 bea1 angle_speed rad/s pitch1 angle speed

18 6 bea1 angle deg pitch2 angle

19 7 bea1 angle_speed rad/s pitch2 angle speed

20 8 bea1 angle deg pitch3 angle

21 9 bea1 angle_speed rad/s pitch3 angle speed

22 __

23 Scale factors:

24 1.56250E-04

25 5.61731E-03

26 4.41991E-04

27 1.00000E+00

28 1.00000E+00

29 1.00000E+00

30 1.00000E+00

31 1.00000E+00

32 1.00000E+00

An important thing to notice is that in the binary data file all sensors are stored sequentially, i.e.
all data for sensor 1, all data for sensor 2, etc. This way of storing the data makes later reading
of a sensor extra fast since all data for a sensor can be read without reading any data for the
other sensor.

A small matlab code for reading the binary HAWC2 format can be seen below.

1 function sig = ReadHawc2Bin(FileName,path);

2 % Reads binary HAWC2 results file

3 % -------------------------------------

4 % [t,sig] = ReadFlex4(FileName,Ch);

5 % filename should be without extension

6 % -------------------------------------

7 % BSKA 26/2-2008

8 % --------------------------------------

9 ThisPath = pwd; cd(path(1,:))

10

11 % reading scale factors from *.sel file

12 fid = fopen([FileName,'.sel'], 'r'); fgets(fid); fgets(fid);

13 fgets(fid); fgets(fid); fgets(fid); fgets(fid); fgets(fid);

14 fgets(fid);

15 tline = fscanf(fid,'%d');

16 N = tline(1); Nch = tline(2); Time = tline(3); fclose(fid);

17 ScaleFactor = dlmread([FileName,'.sel'],'',[9+Nch+5 0 9+2*Nch+4

18 0]);

19

20 % reading binary data file

21 fid = fopen([FileName,'.dat'], 'r'); sig =

22 fread(fid,[N,Nch],'int16')*diag(ScaleFactor); fclose(fid);

23

- 107

24 cd(ThisPath)

17.8 File format for gtsdf and gtsdf64 files

The file formats and reading and writing examples of the gtsdf and gtsdf64 file types and are
described here: https://gitlab.windenergy.dtu.dk/toolbox/WindEnergyToolbox/
blob/master/wetb/gtsdf/General%20Time%20Series%20Data%20Format.pdf

A reference Python implementation to read and write gtsdf files is available in the open source
WindEnergyToolbox:https://gitlab.windenergy.dtu.dk/toolbox/WindEnergyToolbox/
blob/master/wetb/gtsdf/gtsdf.py

17.9 Hub- and nacelle-lidar sensors

The hub- and nacelle-lidar sensors are single-beam lidars that were implemented and updated,
respectively, in HAWC2 version 13.1 (see [18]). Both sensors take into account tower motion
when calculating the line-of-sight velocities.

The nacelle-lidar sensor is a continuous-wave (CW) lidar, which can be offset from the rotor
to a desired initial position. The hub-lidar sensor is a pulsed lidar and is positioned at the rotor
center, but rotates with the rotor. Both sensors translate and rotate with the nacelle. In addition to
the weighted line-of-sight velocity, the outputs of the hub lidar sensor include the line-of-sight
velocity without weighting as well as the three turbulence components at the measurement
point. For more details on the two lidar sensors, please read [18].

17.10 mbdy (main body output commands)

Command
1

Command 2 Explanation Only
option

Label
option

mbdy forcevec �G , �H , �I shear force vector, see definition in
figure 9.

yes yes

1. Main_body name
2. Element number
3. Node number on element (1 or 2)
4. Main_body name of which coordinate system
is used for output. “global” and “local” can also
be used. Local is around local beam main bending
directions.

mbdy momentvec "G , "H , "I moment vector, see definition in
figure 9.

yes yes

1. Main_body name
2. Element number
3. Node number on element (1 or 2)
4. Main_body name of which coordinate system
is used for output. “global” and “local” can also
be used. Local is around local beam main bending
directions.

108 -

https://gitlab.windenergy.dtu.dk/toolbox/WindEnergyToolbox/blob/master/wetb/gtsdf/General%20Time%20Series%20Data%20Format.pdf
https://gitlab.windenergy.dtu.dk/toolbox/WindEnergyToolbox/blob/master/wetb/gtsdf/General%20Time%20Series%20Data%20Format.pdf
https://gitlab.windenergy.dtu.dk/toolbox/WindEnergyToolbox/blob/master/wetb/gtsdf/gtsdf.py
https://gitlab.windenergy.dtu.dk/toolbox/WindEnergyToolbox/blob/master/wetb/gtsdf/gtsdf.py

Command
1

Command 2 Explanation Only
option

Label
option

mbdy forcemomentvec_interp �G , �H , �I , "G , "H , "I interpolated shear
force and moment vector defined to output. This
sensor can write out an interpolated set of cross
sectional forces and moments independent of the
node discretization. It can also write out in local
deformed c2_def coordinates and therefore breaks
the limit of using element coordinates.

yes yes

1. Main_body name
2. Position of location outputted: ’c2def’ or
’default’ (default = elastic center).
3. Name of mbdy used for output coordinate
system: mbdy_name, ’global’, ’local_aero’ or
’local_element’
4. Distance along c2_def to output location
5. Sign multiplied to output: 1.0 or -1.0

mbdy state Vector with 3 components of either position,
velocity or acceleration of a point on an element
defined to output. If ’acg’ is used, the acceleration
including the gravity contribution is written.

yes yes

1. State: ’pos’, ’vel’, ’acc’, ’acg’
(“pos”=position, “vel”=velocity,
“acc”=acceleration)
2. Main_body name
3. Element number
4. Relative distance from node 1 to node 2 on
element
5. Main_body name of which coordinate system is
used for output. “global” can also be used.

mbdy state_at Vector with 3 components of either position,
velocity or acceleration of a point on an element
defined to output. The point is offset from the
element z axis by an x and y distance in element
coordinates.

yes Yes

1. State: ’pos’, ’vel’, ’acc’, ’acg’
2. Main_body name
3. Element number
4. Relative distance from node 1 to node 2 on
element
5. Main_body name of which coordinate system is
used for output. “global” can also be used.
6. x-coordinate offset [m]
7. y-coordinate offset [m]

mbdy state_at2 Vector with 3 components of either position,
velocity or acceleration of a point on an element
defined to output. The point is offset from the
c2_def centerline z axis by an x and y distance
in local c2def centerline coordinates.

yes Yes

1. State: ’pos’, ’vel’, ’acc’, ’acg’
2. Main_body name
3. Element number
4. Relative distance from node 1 to node 2 on
element

- 109

Command
1

Command 2 Explanation Only
option

Label
option

5. Main_body name of which coordinate system is
used for output. “global” can also be used.
6. x-coordinate offset [m]
7. y-coordinate offset [m]

mbdy state_rot Vector with components of either axis and
angle (angle [rad], A1,A2,A3), euler parameters
(quaternions A0,A1,A2,A3), euler angles, rotation
velocity (

yes Yes

-vector) or rotation acceleration (
-vector) of a point on an element defined to output.
For the sensor eulerang_xyx a set of euler angles
are created based on the orientation matrix. Be
aware that the method used is only valid for
rotations in the intervals
(\G ±180°, \H ±90°, \G ±180°). The method
proj_ang can be used to see how much a blade
tip rotates around the pitch axis, but be aware that
the angles are how the element is oriented and not
necesarily how the local chord is rotated. With
the command proj_ang the angles are obtained
from the local element orientation 3x3 matrix)4,
seen from the chosen coordinate system using the
Atan2 functions (rot_x=atan2[)4(2,3),)4(3,3)],
rot_y=atan2[)4(3,1),)4(1,1)],
rot_z=atan2[)4(1,2),)4(2,2)]).
1. State : ’axisangle’, ’eulerp’, ’eulerang_xyz’,
’omega’, ’omegadot’ or proj_ang
2. Main_body name
3. Element number
4. Relative distance from node 1 to node 2 on
element
5. Main_body name of which coordinate system is
used for output. “global” can also be used.

mbdy statevec_new This sensor writes out the position vector and
orientation vector for a point on the structure. The
orientation vector is a direction vector to which
the structure is rotated and the vector length is
the size of this rotation. There is a direct relation
between this vector and the 3x3-orientationmatrix,
but it is easier to overview as each single element
corresponds to a 2D projected rotation (rot_x,
rot_y, rot_z).

yes Yes

Furthermore it can write out the orientation of
the local deformed c2_def coordinates system
and therefore breaks the limit of only looking at
element orientations.
1. Main_body name
2. Position of location outputted: ’c2def’ or
’default’ (default = elastic center).
3. Name of mbdy used for output coordinate
system: mbdy_name or ’global’

110 -

Command
1

Command 2 Explanation Only
option

Label
option

4. State: ’elastic’ or ’absolute’. Elastic means that
initial location is subtracted results
5. Distance along c2_def to output location
6. Sign multiplied to output: 1.0 or -1.0
7. x-coordinate offset from center to a point where
location is outputted (local c2def coo) [m]
8. y-coordinate offset from center to a point where
location is outputted (local c2def coo) [m]

mbdy wind This sensor writes out the global or relative wind
velocity components for a point on a main body.
The measurement point follows the structure rigid
body motions and elastic deflections.

yes Yes

This output channel can be important if the wind
measurement point moves long distances during
the analysis. For example floating wind turbines
can move dozens meters during a simulation.
1. Main_body name
2. Element number on the main body
3. Relative distance from node 1 to node 2 on the
element
4. Wind velocity measurement method: ’global’
or ’relative’. Relative means the point velocity is
substracted from the global wind speed
5. x-coordinate offset of the point [m]
6. y-coordinate offset of the point [m]

This illustration shows how the sensors are placed on an element in terms of local nodes and
relative distance.

- 111

1

Beam2

Beam1

1 2 3
4

Beam3

1

Beam2, element 4, node 1

Beam2, element 3, node 2

co
nc

. m
as

s

External
 force

Figure 9: The "mbdy forcevec" and "mbdy momentvec" sensor definitions depend on argument
3, "node number on element", which must be 1 or 2.
For node number 1 (element start node), the sensors output the forces and moments (blue
in figure) that the element and the succeeding structure (excluding concentrated masses and
external forces attached to the node) applies to the preceding structure.
For node number 2 (element end node), the sensors output the forces andmoments (red in figure)
that the succeeding structure (including concentrated masses and external forces attached to the
node) applies to the element and the preceding structure.

112 -

17.11 Constraint (constraint output commands)

17.11.1 bearing1

Command
1

Command 2 Explanation Only
option

Label
option

constraint bearing1 Bearing angle and angle velocity defined to output Yes No
1. bearing1 name
2. unit of output
(1:angle [unit=rad, range -c:c], vel [rad/s];
2:angle [unit=deg, range 0:360], vel [rpm];
3:angle [unit=deg, range 0:360], vel [rad/s]);
4:angle [unit=deg, range -180:180], vel [rad/s];
5:angle [unit=deg, range -180:180], vel [deg/s])

17.11.2 bearing2

Command
1

Command 2 Explanation Only
option

Label
option

constraint bearing2 Bearing angle and angle velocity defined to output Yes No
1. bearing2 name
2. unit of output
(1:angle [unit=rad, range -c:c], vel [rad/s];
2:angle [unit=deg, range 0:360], vel [rpm];
3:angle [unit=deg, range 0:360], vel [rad/s]);
4:angle [unit=deg, range -180:180], vel [rad/s];
5:angle [unit=deg, range -180:180], vel [deg/s])

17.11.3 bearing3

Command
1

Command 2 Explanation Only
option

Label
option

constraint bearing3 Bearing angle and angle velocity defined to output Yes No
1. bearing3 name
2. unit of output
(1:angle [unit=rad, range -c:c], vel [rad/s];
2:angle [unit=deg, range 0:360], vel [rpm];
3:angle [unit=deg, range 0:360], vel [rad/s]);
4:angle [unit=deg, range -180:180], vel [rad/s];
5:angle [unit=deg, range -180:180], vel [deg/s])

17.11.4 bearing4

Rotation angle and velocity of the two axis perpendicular to the cardan shaft torsion axis are
outputted.

Command
1

Command 2 Explanation Only
option

Label
option

constraint bearing4 Bearing angle and angle velocity defined to output Yes No
1. bearing4 name
2. unit of output
(1:angle [unit=rad, range -c:c], vel [rad/s];
2:angle [unit=deg, range 0:360], vel [rpm];

- 113

Command
1

Command 2 Explanation Only
option

Label
option

3:angle [unit=deg, range 0:360], vel [rad/s]);
4:angle [unit=deg, range -180:180], vel [rad/s];
5:angle [unit=deg, range -180:180], vel [deg/s])

17.12 aero (aerodynamic related commands)

Command
1

Command 2 Explanation Label
option

aero time Simulation time to output. No parameters. No
aero azimuth Azimuth angle of selected blade. Zero is vertical

downwards. Positive clockwise around blade root
y-axis. Unit [deg]

No

1. Blade number
aero omega Rotational speed of rotor. Unit [rad/s]. See

additional explanations below table.
No

aero vrel Relative velocity in x-y local aerodynamic plane.
Unit [m/s]

No

1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero vrel_3d Relative velocity in x-y-z local aerodynamic space.
Unit [m/s]

No

3. Blade number
4. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero alfa Angle of attack in x-y local aerodynamic plane.
Unit [deg]

No

1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero alfadot Pitch rate term (z-axis rotation) in local
aerodynamic plane, as used for non-circulatory
contributions. Unit [rad/s]

No

1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero sideslip Side slip angle (from radial flow of BEM
expansion)

No

1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero beta Flap deflection angle (matching the deflection
specified by the flap control .dll):

No

1. Blade number
2. Flap number, according to the order defined in
the dynstall_ateflap sub-command block.

aero cl Instantaneous lift coefficient. Unit [-] No
1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero cd Instantaneous drag coefficient. Unit [-] No

114 -

Command
1

Command 2 Explanation Label
option

1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero cm Instantaneous moment coefficient. Unit [-] No
1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero lift Lift force at calculation point. Unit [kN/m] No
1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero drag Drag force at calculation point. Unit [kN/m] No
1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero moment Aerodynamic moment at calculation point. Unit
[kNm/m]

No

1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero secforce Aerodynamic force at calculation point. Local aero
coo. Unit [kN/m]

No

1. Blade number
2. Dof number (1=�G , 2=�H , 3=�I)
3. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)
4. Coordinate system (1=aero, 2=blade, 3=global,
4=rotor polar)
Note that 4th input argument is optional
(default=1)

aero secmoment Aerodynamic moment at calculation point. Local
aero coo. Unit [kNm/m]

No

1. Blade number
2. Dof number (1="G , 2="H , 3="I)
3. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero int_force Integrated aerodynamic forces from tip to
calculation point. NB the integration is performed
around the �3/4 location. Unit [kN]

No

1. Coordinates system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)
2. Blade number
3. Dof number (1=�G , 2=�H , 3=�I)
4. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero int_moment Integrated aerodynamic moment from tip to
calculation point. NB the integration is performed
around the �3/4 location. Unit [kNm]

No

1. Coordinates system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)

- 115

Command
1

Command 2 Explanation Label
option

2. Blade number
3. Dof number (1="G , 2="H , 3="I)
4. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero int_rotor_force Integrated aerodynamic rotor forces. Unit [kN] No
1. Coordinate system (3=global, 4=rotor polar)
2. Dof number (1=�G , 2=�H , 3=�I)

aero int_rotor_moment Integrated aerodynamic rotor moments. Unit
[kNm]

No

1. Coordinate system (3=global, 4=rotor polar)
2. Dof number (1="G , 2="H , 3="I)

aero torque Integrated aerodynamic forces of all blades to rotor
torsion.Unit [kNm].No parameters. See additional
explanations below table.

No

aero thrust Integrated aerodynamic forces of all blades to rotor
thrust. Unit [kN]. No parameters

No

aero position Position of calculation point. Unit [m]. Please be
aware that if the blade ref system is used, the
orientation is in the blade coo, but the origo is
still in the hub center.

No

1. Coordinates system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)
2. Blade number
3. Dof number (1="G , 2="H , 3="I)
4. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero power Integrated aerodynamic forces of all blades to rotor
torsion multiplied by the rotor speed. Unit [kW].
No parameters. See additional explanations below
table.

No

aero rotation Orientation of calculation point. Unit [deg]. No
1. Blade number
2. Dof number (1=\G , 2=\H , 3=\I)
3. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)
4. Coordinate system (1=blade_ref. coo, 2=rotor
polar coo.)

aero rotation_e Orientation of calculation point. Unit [deg]. No
1. Blade number
2. Dof number (1=\G , 2=\H , 3=\I)
3. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)
4. Coordinate system (1=blade_ref. coo, 2=rotor
polar coo.)

aero velocity Velocity of calculation point. Unit [m/s]. No
1. Coordinates system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)
2. Blade number
3. Dof number (1= +G , 2=+H , 3=+I)
4. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero acceleration Acceleration of calculation point. Unit [m/s2]. No

116 -

Command
1

Command 2 Explanation Label
option

1. Coordinates system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)
2. Blade number
3. Dof number (1= +G , 2=+H , 3=+I)
4. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero tors_e Aeroelastic torsional twist minus initial static twist
of a blade section.

No

1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero windspeed Free wind speed seen from the blade. Unit [m/s] No
1. Coordinate system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)
2. Blade number
3. Dof number (1= +G , 2=+H , 3=+I)
4. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)
5. Tower shadow included (1: with tower shadow,
0: without tower shadow)
Note that 5th input argument is optional
(default=1)

aero wsp_rotor_avg Rotor average free wind speed (excluding tower
top motion). Unit [m/s]

No

1. Coordinate system (1=global; 2=rotor with y
perpendicular to the rotor plane, for zero yaw and
tilt equivalent to global coordinate system)

(New in 12.6.14) 3. Dof number (1= +G , 2=+H , 3=+I)
aero spinner_lidar Sensor emulating a spinner mounted lidar No

1. Measurement type (1=single point, 2=volume
average)
2. Scan type (1=circular scan, 2=horizontal line
(sine sweep), 3=horizontal line (linear sweep),
4=circular 2D scan)
3. Focus length [m]
4. Measurement angle [deg]
5. Scanning velocity [rev/sec]
6. Velocity fraction (2D scan)
7. Beam radius at output lens [m]
8. Number of points in volume scan
9. Wavelength [m]

aero induc Local induced velocity at calculation point. Unit
[m/s]

No

1. Coordinates system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)
2. Blade number
3. Dof number (1= +G , 2=+H , 3=+I)
4. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero induc_theodorsen Local induced velocity from 2D shed vorticity
model at calculation point. Only relevant if
dynstall_method = 2 or 3. Unit [m/s]

No

- 117

Command
1

Command 2 Explanation Label
option

1. Coordinates system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)
2. Blade number
3. Dof number (1= +G , 2=+H , 3=+I)
4. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero induc_sector_ct Thrust coefficient at a position on the rotor. Unit
[-]

No

1. Radius [m]
2. Azimuth angle (zero downwards) [deg]

aero induc_sector_cq Torque coefficient at a position on the rotor. Unit
[-]

No

1. Radius [m]
2. Azimuth angle (zero downwards) [deg]

aero induc_sector_a Axial induction coefficient at a position on the
rotor. Unit [-]

No

1. Radius [m]
2. Azimuth angle (zero downwards) [deg]

aero induc_sector_am Tangential induction coefficient at a position on
the rotor. Unit [-]

No

1. Radius [m]
2. Azimuth angle (zero downwards) [deg]

aero induc_a_norm Axial velocity used in normalization expression
of rotor thrust coefficients. The average axial wind
velocity excl. induction.Unit [m/s].Noparameters.

No

aero induc_am_norm Tangential velocity used in normalization ex-
pression of torque coefficient. Average tangential
velocity at a given radius. Unit [m/s].

No

1. Radius [m]
aero inflow_angle Angle of attack + rotation angle of profile related

to polar coordinates (not pitching). Unit [deg]
No

1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero dcldalfa Gradient No
3�;/3U. Unit [deg−1]
1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero dcddalfa Gradient No
3�3/3U. Unit [deg−1]
1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero gamma Circulation strength at calculation point. Unit
[m2/s]

No

1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero lambda Tip speed ratio, Unit [−] No

118 -

Command
1

Command 2 Explanation Label
option

aero windspeed_boom Free wind speed seen by a boom mounted on a
blade section. Coordinate system used “blade ref.
system”. Unit [m/s].

No

1. Blade number
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)
3. Boom-length X, measured from half chord point
positive towards LE [m]
4. Boom-length Y, measured from half chord point
positive towards pressureside [m]

aero actuatordiskload Actuator disk load provide normalized load export
for the Actuator Disk Model.

No

1. DOF (1=Ft, 2=Fa, 3=Fr)
2. Curved length distance from main_body node 1
[m] (nearest inner calculation point is used)

aero grid_radius_nd Aerodynamic calculation point non-dim radius r/R No
1. Number of radial stations outputted (should
normally correspond to number of aerodynamic
calculation points on a blade)

aero vawt_induc_x Induction for a VAWToutputted in tangential polar
coordinates

No

1. disc number
2. azimuth number

aero vawt_induc_y Induction for a VAWT outputted in radial polar
coordinates

No

1. disc number
2. azimuth number

aero nacelle_lidar Modified v13.1 (see [18]). Model of a single-
beam, CW nacelle-mounted lidar. See description
Sec. 17.9. Inputs are:

Yes

1. Mounting distance from rotor center in global x
coordinates [m]
2. Mounting distance from rotor center in global y
coordinates [m]
3. Mounting distance from rotor center in global z
coordinates [m]
4. Half-cone opening angle of beam [deg]
5. Azimuth angle of beam measured (clockwise as
seen from turbine) from vertical up postion [deg]
6. Focus length measured from rotor center (along
the beam) [m]
7. Rayleigh length of beam [m]
8. Half-width of integration interval over probe
volume, normalized by Rayleigh length [−]
9. Number of integration points [−]
10. Beam identifier number [−]
Outputs are: No
1. Line-of-sight velocity [m/s]
2. Doppler spectrum variance [m2/s2]
3. Global x position of focus point
4. Global y position of focus point
5. Global z position of focus point

- 119

Command
1

Command 2 Explanation Label
option

aero hub_lidar Implemented v13.1 (see [18]). Model of a single-
beam, pulsed hub-mounted lidar. See description
Sec. 17.9. Inputs are:

Yes

1. Half-cone opening angle of beam [deg]
2. Azimuthal angle of beam, measured (anti-
clockwise as seen from turbine) from blade1 initial
position [deg]
3. Range length of beam,measured along the beam
from rotor center [m]
4. Range-gate length (Δ%) [m]
5. Full width at half-maximum (Δ!) [m]
6. Half-width of integration interval over probe
volume, normalized by Δ! [−]
7. Number of integration points [−]
8. Beam identifier number [−]
Outputs are: No
1. Global x position of focus point
2. Global y position of focus point
3. Global z position of focus point
4. Lidar line-of-sight velocity [m/s]
5. True (unweighted) line-of-sight velocity [m/s]
6. Free wind component at focus position along
global x [m/s]
7. Free wind component at focus position along
global y [m/s]
8. Free wind component at focus position along
global z [m/s]

aero effective_wind_speed Estimation of rotor effective wind speed as a
(weighted) average of longitudinal wind speeds
within the rotor area:

No

Eeff =
=

√ ∫ 2c
0

∫ '
0 E=D (A ,i)F (A ,i)A3A3\∫ 2c
0

∫ '
0 F (A ,i)A3A3\

. Unit [m/s]

Inputs are:
1. Number of blades [-]
2. Rotor radius (R) [m]
3. Tip speed ratio at rated wind speed [-] (only used
when input 9 is equal to 3)
4. Exclusion of root part [R] (only used when input
9 is equal to 3)
5. Normal measurement distance from rotor plane
[m]
6. Width of turbulence box [m] (use the values
from the turbulence box block)
7. Number of integration points alongwidth/height
[-]
8. power to weight wind speed with (n) [-]
9. Weighting method:
1: arithmetic mean
2: dCpdr weight w/o losses
3: dCpdr weight with (tip and root) losses
10. Optimum axial induction factor (only used
when input 9 is equal to 2 or 3)

120 -

Multi-rotor simulation

For multi-rotor simulation, three commands are used: - Command 1: aero_mr - Command 2:
as command 2 from above table - Command 3: name of rotor given in main command block
’aero’

Additional explanations on aero omega, aero torque and aero power

aero omega Gives the ’aerodynamic’ rotor speed, which is an average rotational speed of
the blades. In general, it is very similar to the shaft rotor speed, but it may be different
especially in case of vibrations in a drivetrain mode. In this case, the blades move edgewise
collectively, which means that the ’aero’ rotor speed will oscillate around the shafts
rotational speed with the frequency of the respective drivetrain mode.

aero torque Aerodynamic torque from integration of the sectional torque over all aerodynamic
blade sections. Depending on the aerodynamic (number of aerosections) and structural
(number of sections in the c2_def) this torque may differ by up to a few percent from the
computed mechanical torque at the shaft. Differences may indicate that a refinement of
the aerodynamic and/or structural discretization of the blades is necessary. Further, the
aerodynamic torque may be very different from the shaft torque if the rotor speed is not
constant. For example in case of an increasing rotor speed, such as due to a gust, a part of
the aerodynamic torque will accelerate the rotor and will thus not be felt at the shaft.

aero power This aerodynamic power is computed as the product of the aerodynamic rotor speed
and aerodynamic torque above. Therefore it will be different from a mechanical power
(shaft moment multiplied by shaft rotational speed) in any of the cases described above:
vibrations of the drivetrain including collective edgewise blade vibrations, insufficient
aerodynamic or structural discretization and non-constant rotor speed.

- 121

Figure 10: Illustration of the boom coordinates used by the “windspeed_boom” command.

17.13 wind (wind output commands)

Command
1

Command 2 Explanation Only
option

Label
option

wind free_wind Wind vector +G , +H , +I , (wind as if the turbine
didn’t exist).

Yes Yes

1. Coordinate system (1=global, 2=non rotating
rotor coordinates (x always horizontal, y always
out-of-plane))
2. x-pos (global coo)
3. y-pos (global coo)
4. z-pos (global coo)

wind free_wind_center_pos0 Wind vector +G , +H , +I , (wind as if the turbine
didn’t exist).

Yes Yes

1. Coordinate system (1=global, 2=non rotating
rotor coordinates (x always horizontal, y always
out-of-plane)) _center_pos0

wind free_wind_hor Horizontal wind component velocity [m/s] and
direction [deg] defined to output. Dir=0whenwind
equals y-dir.

Yes Yes

1. Coordinate system (1=global, 2=non rotating
rotor coordinates (x always horizontal, y always
out-of-plane))
2. x-pos (global coo)
3. y-pos (global coo)
4. z-pos (global coo)

wind free_wind_-
hor_center_pos0

Horizontal wind component velocity [m/s] and
direction [deg] defined to output. Dir=0whenwind
equals y-dir.

Yes Yes

1. Coordinate system (1=global, 2=non rotating
rotor coordinates (x always horizontal, y always
out-of-plane))

wind free_wind_shadow As sensor “free_wind”, but with tower shadow
included.

Yes Yes

122 -

Command
1

Command 2 Explanation Only
option

Label
option

1. Coordinate system (1=global, 2=non rotating
rotor coordinates (x always horizontal, y always
out-of-plane))
2. x-pos (global coo)
3. y-pos (global coo)
z-pos (global coo)

17.14 wind_wake (wind wake output commands)

Command
1

Command 2 Explanation Only
option

Label
option

wind_wake wake_pos Position of the wake deficit center after the
meandering proces to the downstream end
position. x,y and z position is written in
meteorological coordinates (G, H, I)" = (D, E, F)
with origo in the position definedwith center_pos0
in the general wind commands.

Yes Yes

1. wake source number

17.15 dll (DLL output commands)

Command
1

Command 2 Explanation Label
option

dll inpvec Value from DLL input vector is defined to output yes
1. DLL number
2. array index number

dll outvec Value from DLL output vector is defined to output yes
1. DLL number
2. array index number

dll hawc_dll Special output commands for the “hawc_dll”
format. With this command the dll name can be
used in the output definitions

yes

1. string. Reference name of the dll given in the
begin – end hawc_dll input definitions.
2. string. “outvec” or “inpvec” can be used. Same
definition as previously written above.
3. Channel number in the in or out going array.

dll type2_dll Special output commands for the “type2_dll”
format. With this command the dll name can be
used in the output definitions

yes

1. string. Reference name of the dll given in the
begin – end hawc_dll input definitions.
2. string. “outvec” or “inpvec” can be used. Same
definition as previously written above.
3. Channel number in the in or out going array.

dll sensor_id Name of sensor_id defined for other output sensor
1. Sensor number if sensor id refers to a vector

- 123

17.16 hydro (hydrodynamic output commands)

Command
1

Command 2 Explanation Only
option

Label
option

hydro water_surface Water surface level at a given horizontal location
is defined to output (global coordinates). Unit [m]

No No

1. x-pos
2. y-pos

hydro water_vel_acc Water velocity +G , +H , +I , and acceleration �G ,
�H , �I vectors defined to output. Unit [m/s] and
[m/s2].

Yes No

1. x-pos
2. y-pos
3. z-pos

hydro water_pressure Dynamic water pressure from Bernoulli’s equa-
tion, in a given hydro element calculation point.
Unit [MPa].

No No

1. hydro element number
2. radius (in [m], axial distance from 1st node)
3. coordinate system (1=global, 2=local hydro sec
coo)

hydro fm Radial inertia force (FK + hydro mass) �G , �H ,
�I contribution from Morisons formula in a given
calculation point. Unit [kN/m]. Note: added mass
is by default computed in the right hand side of the
EOM, so the hydro mass term is only accounting
for the fluid acceleration term.

No No

1. hydro element number
2. radius (in [m], axial distance from 1st node)
3. coordinate system (1=global, 2=local hydro sec
coo)

hydro fd Radial drag force �G , �H , �I contribution from
Morisons formula in a given calculation point. Unit
[kN/m]

No No

1. hydro element number
2. radius (in [m], axial distance from 1st node)
3. coordinate system (1=global, 2=local hydro sec
coo)

hydro fb Buoyancy force (distributed along element) �G ,
�H , �I contribution in a given calculation point.
Unit [kN/m]

No No

1. hydro element number
2. radius (in [m], axial distance from 1st node)
3. coordinate system (1=global, 2=local hydro sec
coo)

hydro mb Buoyancy moment (distributed along element)
"G , "H , "I contribution in a given calculation
point. Unit [kNm/m]

No No

1. hydro element number
2. radius (in [m], axial distance from 1st node)
3. coordinate system (1=global, 2=local hydro sec
coo)

124 -

Command
1

Command 2 Explanation Only
option

Label
option

hydro cfb Concentrated axial buoyancy force �G , �H , �I
contribution in a given calculation point. Unit
[kN]. Note: in case of auto hydro sections =0, if the
specified radius is not a hydro or structural node,
the sensorwill output the nearest node information.

No No

1. hydro element number
2. radius (in [m], axial distance from 1st node)
3. coordinate system (1=global, 2=local hydro sec
coo)

hydro cmb Concentrated buoyancy moment "G , "H , "I

contribution in a given calculation point. Unit
[kNm]. Note: in case of auto hydro sections =0,
if the specified radius is not a hydro or structural
node, the sensor will output the nearest node
information.

No No

1. hydro element number
2. radius (in [m], axial distance from 1st node)
3. coordinate system (1=global, 2=local hydro sec
coo)

hydro cfm Concentrated force from axial hydro mass �G , �H ,
�I contribution in a given calculation point. Unit
[kN]. Added mass is by default computed in the
right hand side of the EOM, so the hydromass term
is only accounting for the fluid acceleration term,
and computed as d+A4 5 �0,0G80;F0C4A_022, with
+A4 5 taken as half volume of sphere defined by
the local width (of the specified element radius) as
diameter. Note: in case of auto hydro sections =0,
if the specified radius is not a hydro or structural
node, the sensor will output the nearest node
information.

No No

1. hydro element number
2. radius (in [m], axial distance from 1st node)
3. coordinate system (1=global, 2=local hydro sec
coo)

hydro cfdrag Concentrated force from axial damping �G , �H ,
�I contribution in a given calculation point. Unit
[kN]. Note: in case of auto hydro sections =0, if the
specified radius is not a hydro or structural node,
the sensorwill output the nearest node information.

No No

1. hydro element number
2. radius (in [m], axial distance from 1st node)
3. coordinate system (1=global, 2=local hydro sec
coo)

hydro fdyn Dynamic wave pressure force (distributed) �G , �H ,
�I contribution in a given calculation point. Unit
[kN/m]

No No

1. hydro element number
2. radius (in [m], axial distance from 1st node)
3. coordinate system (1=global, 2=local hydro sec
coo)

- 125

Command
1

Command 2 Explanation Only
option

Label
option

hydro cfdyn Concentrated axial dynamic wave pressure force
�G , �H , �I contribution in a given calculation
point. Unit [kN]. Note: in case of auto hydro
sections =0, if the specified radius is not a hydro or
structural node, the sensor will output the nearest
node information.

No No

1. hydro element number
2. radius (in [m], axial distance from 1st node)
3. coordinate system (1=global, 2=local hydro sec
coo)

hydro secfrc Total hydro distributed force �G , �H , �I

contribution in a given calculation point. Unit
[kN/m]

No No

1. hydro element number
2. radius (in [m], axial distance from 1st node)
3. coordinate system (1=global, 2=local hydro sec
coo)

hydro secmom Total hydro distributed moment "G , "H , "I

contribution in a given calculation point. Unit
[kNm/m]

No No

1. hydro element number
2. radius (in [m], axial distance from 1st node)
3. coordinate system (1=global, 2=local hydro sec
coo)

hydro cfrc Total hydro axial concentrated force �G , �H , �I
contribution in a given calculation point. Unit
[kN]. Note: in case of auto hydro sections =0, if the
specified radius is not a hydro or structural node,
the sensorwill output the nearest node information.

No No

1. hydro element number
2. radius (in [m], axial distance from 1st node)
3. coordinate system (1=global, 2=local hydro sec
coo)

hydro totfrc/totmom Total hydro force/moment from integration of
distributed forces and moment over the hydro
element. Total �G/"G , �H/"H , �I/"I . Unit
[kN/kNm]. The sensor can be used for individual
hydro elements by specifying the required hydro
element number below; the reference point for
the moment is then the location of first hydro
section. Or the sensor can be the sum over all
hydro elements by specifying ’all’ below; the
reference point for the moment is then the global
origin. All forces andmoments are output in global
coordinates

No No

1. hydro element number OR ’all’

17.17 External forces

126 -

Command
1

Command 2 Explanation Label
option

force 1. Name of the force DLL. No

17.18 general (general output commands)

Command
1

Command 2 Explanation Label
option

general constant A constant value is send to output Yes
1. constant value

general step A step function is created. This function changes
from 50 to 51 at time C0.

Yes

1. C0 [sec]
2. 50
3. 51

general step2 A step function is created. This function changes
from 50 to 51 between time C0 and C1 using linear
interpolation.

Yes

1. C0 [sec]
2. C1 [sec]
3. 50
4. 51

general step3 A step function is created. This function changes
from 50 to 51 between time C0 and C1 using a
continous sinus2 interpolation function.

Yes

1. C0 [sec]
2. C1 [sec]
3. 50
4. 51

general time The time is send to output. No parameters Yes
general deltat The time increment is send to output. No

parameters
Yes

general harmonic A harmonic function is send to output Yes
� (C) = � sin(2c 50C) + :
1. A
2. 50
3. k

general harmonic2 A harmonic function is send to output Yes

� (C) =

0 C < C0

� sin(2c 50 (C − C0)) + : C0 ≤ C ≤ C1
0 C > C1

1. A
2. 50
3. k
4. C0
5. C1

general stairs A series of steps resulting in a staircase signal is
created.

Yes

1. C0 time for first step change [s]
2. 50 start value of function
3. Step size

- 127

Command
1

Command 2 Explanation Label
option

4. Step duration [s]
5. Number of steps

general status A status flag (mainly for controller purpose) is
written. A first time step and first iteration the
output value is 0. During the rest of the simulation
the value is 1 until last time step where the value
is -1.

Yes

general random A randon (uniform distribution) is written Yes
1. lower limit
2. upper limit
3. seed number

general impulse A step function which return to zero after a certain
duration

Yes

1. C0 time for impulse start [s]
2. Impulse duration [s]
3. 50 impulse level

general sensor_id Sensor name. No
1. Sensor name
2. Sensor number if sensor name refers to a vector

18 Output_at_time (output at a given time)

This command is especially usefull if a snapshot of loads or other properties are required at a
specific time. This is mostly used for writing calculated aerodynamic properties as function of
blade location. The command block can be repeated as many times as needed (e.g. if outputs at
more than one time is needed)

The command must be written with the following syntax

output_at_time keyword time

where keyword is the name of an output subcommand. Currently only the subcommand aero is
supported. The last command word time is the time in seconds from simulation start to which
the output are written.

18.1 aero (aerodynamic output commands)

The first line in the output_at block must be the information regarding which file the outputs
are written (the filename command listed in the table below)

Command 1 Explanation Label
option

filename Filename incl. relative path to output file No
(example ./output/output_at.dat).
1. filename

alfa Angle of attack [deg]. No
1. Blade number

alfadot Pitch rate term (z-axis rotation) in local aerodynamic plane, as used for
non-circulatory contributions. Unit [rad/s].

No

1. Blade number

128 -

Command 1 Explanation Label
option

vrel Relative velocity [m/s] No
1. Blade number

cl Lift coefficient [-] No
1. Blade number

cd Drag coefficient [-] No
1. Blade number

cm Moment coefficient [-] No
1. Blade number

lift Lift force L [N/m] No
1. Blade number

drag Drag force D [N/m] No
1. Blade number

moment Moment force M [Nm/m] No
1. Blade number

secforce Aerodynamic forces [kN/m] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

secmoment Aerodynamic moments [kNm/m] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

int_force Aerodynamic forces integrated from tip to given radius [kN] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

int_moment Aerodynamic moment integrated from tip to given radius [kNm] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

inipos Initial position of sections in blade coo [m] No
1. Blade number
2. DOF number (1=x,2=y,3=z)

position Actual position of section [m] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

velocity Actual velocity of section [m/s] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

acceleration Actual acceleration of section [m/s] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

ct_local Local thrust coefficient [-]. Calculated based on the expression No
�C =

�0G80; �
1/2d2c A + 2

inf
1. Blade number

cq_local Local tangential force coefficient [-]. Calculated based on the expression No
�@ =

�tan �
1/2d2c A + 2

inf
1. Blade number

- 129

Command 1 Explanation Label
option

chord Chord length [m] No
1. Blade number

induc Induced velocity [m/s] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

windspeed Free windspeed (without induction) [m/s] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)
4. Include tower shadow (1:with tower shadow, 0:without tower shadow)
Note that the 4th input argument is optional (default =1)

inflow_angle Angle of attack + rotation angle of profile related to polar coordinates
(not pitching). Unit [deg]

No

1. Blade number
dcldalfa Gradient 3�;/3U . Unit [deg−1] No

1. Blade number
dcddalfa Gradient 3�3/3U . Unit [deg−1] No

1. Blade number
tiploss_f The local tiploss factor (product of Prandtl and custom tiploss factor) No

1. Blade number

An example of an output_at_time command block could be:

1 begin output_at_time aero 100;

2 filename ./output_at_time ;

3 alfa 1;

4 end output_at_time;

130 -

19 Input file encryption

19.1 DLL format

From version 11.6 it is possible to attach a DLL from where the blade data can be extracted.
In doing so, the user is not able to inspect the blade input data from a readable text file.
This approach requires a Fortran Intel compiler setup (when using a DTU provided template)
from the data owner in order to compile the blade data into a DLL. The user refers to the
external blade data in DLL format in the new_htc_structure and aero sections using the
external_bladedata_dll command (as described earlier in this manual in the relevant
sections).

19.2 Encrypted binary format

Starting from version 12.8, a new method to hide confidential input data is offered. This
approach allows the data owner to encrypt normal HAWC2 input data files into files that only
HAWC2 is able to read. The encryption is performed by an executable, which is provided by
the HAWC2 support, hawc2@windenergy.dtu.dk, upon request. Note, the executable is only
needed to generate the encrypted input data, i.e. no additional tools are needed by the end user
to use the encrypted data files.

19.2.1 How to encrypt data files

Data files are encrypted from command line as follows:

> EncryptDataFile.exe mydatafile.dat

This will generate the encrypted file mydatafile.dat.enc

19.2.2 Using encrypted data files

To use the data file with HAWC2, simply replace the data file name in the htc file.

HAWC2 will recognize and decrypt *.enc files for the following types of files:

• Timoschenko input (new_htc_structure/main_body/timoschenko_input/filename)

• Aero dynamic layout (aero/ae_filename)

• Profile coefficients (aero/pc_filename)

• HTC sub files (continue_in_file). NOTE: No output options are disabled. The user
may be able to output your confidential data via output sensors or other output options

19.2.3 Disabled output

When the aerodynamic layout or profile coefficients are encrypted, the following output options
are unavailable:

• output:

– cl, cd, cm

– lift, drag, moment

– induc

- 131

– induc_sector_ct, induc_sector_cq

– induc_sector_a, induc_sector_am

– induc_a_norm

– induc_am_norm

– dcldalfa, dcddalfa

– secforce, secmoment

– int_force, int_moment

– vawt_induc_x, vawt_induc_y

– grid_all_ct, grid_all_induc_u

• Output_at_time:

– cl, cd, cm

– lift, drag, moment

– ct_local, cq_local

– chord, twist

– dcldalfa, dcddalfa

– induc

– secforce, secmoment

– int_force, int_moment

– vawt_qr, vawt_qt, vawt_qn

– vawt_induc_x, vawt_induc_y

• output_profile_coef_filename

When the Timoschenko input file is encrypted, the following output options are unavailable:

• new_htc_structure

– beam_output_file_name

– body_output_file_name

– struct_inertia_output_file_name

– body_matrix_output

– element_matrix_output

132 -

20 Examples and Reference Models

A selection of specific examples is maintained at the following git repository:

https://gitlab.windenergy.dtu.dk/HAWC2Public/examples.

A collection of public reference HAWC2 models is available at:

https://gitlab.windenergy.dtu.dk/hawc-reference-models/.

- 133

https://gitlab.windenergy.dtu.dk/HAWC2Public/examples
https://gitlab.windenergy.dtu.dk/hawc-reference-models/

References

[1] H.Aa.Madsen, G. C. Larsen, T. J. Larsen, N. Troldborg, andR.Mikkelsen. Calibration and
Validation of the DynamicWake Meandering Model for Implementation in an Aeroelastic
Code. Journal of Solar Energy Engineering, 132(4), 10 2010.

[2] T. J. Larsen, H. Aa. Madsen, G. C. Larsen, and K. S. Hansen. Validation of the dynamic
wake meander model for loads and power production in the egmond aan zee wind farm.
Wind Energy, 16(4):605–624, 2013.

[3] A. Li, M. Gaunaa, G. R. Pirrung, A. Meyer Forsting, and S. G. Horcas. How should the
lift and drag forces be calculated from 2-d airfoil data for dihedral or coned wind turbine
blades? Wind Energy Science, 7(4):1341–1365, 2022.

[4] Georg R Pirrung and Mac Gaunaa. Dynamic stall model modifications to improve the
modeling of vertical axis wind turbines. DTU Wind Energy E-0171, Roskilde, Denmark,
2018.

[5] H. Aa. Madsen, T. J. Larsen, G. R. Pirrung, A. Li, and F. Zahle. Implementation of the
blade element momentum model on a polar grid and its aeroelastic load impact. Wind
Energy Science, 5(1):1–27, 2020.

[6] A. Li, G. R. Pirrung, M. Gaunaa, H. Aa. Madsen, and S. G. Horcas. A computationally
efficient engineering aerodynamic model for swept wind turbine blades. Wind Energy
Science, 7(1):129–160, 2022.

[7] A. Li, M. Gaunaa, G. R. Pirrung, N. Ramos-García, and S. G. Horcas. The influence of
the bound vortex on the aerodynamics of curved wind turbine blades. Journal of Physics:
Conference Series, 1618(5):052038, sep 2020.

[8] A. Li,M.Gaunaa, G. R. Pirrung, and S.G.Horcas. A computationally efficient engineering
aerodynamic model for non-planar wind turbine rotors. Wind Energy Science, 7(1):75–
104, 2022.

[9] Morten H Hansen, Mac Gaunaa, and Helge Aa Madsen. A Beddoes-Leishman type
dynamic stall model in state-space and indicial formulations. Risø-R-1354, Roskilde,
Denmark, 2004.

[10] A. Li, M. Gaunaa, G. R. Pirrung, A. Meyer Forsting, and S. G. Horcas. How should the
lift and drag forces be calculated from 2-d airfoil data for dihedral or coned wind turbine
blades? Wind Energy Science, 7(4):1341–1365, 2022.

[11] L. Bergami and M. Gaunaa. ATEFlap Aerodynamic Model, a dynamic stall model
including the effects of trailing edge flap deflection. Risø-R-1792(EN), Roskilde, Denmark,
2012.

[12] Mac Gaunaa. Unsteady two-dimensional potential-flow model for thin variable geometry
airfoils. Wind Energy, 13(2-3):167–192, 2010.

[13] E. Branlard and M. Gaunaa. Superposition of vortex cylinders for steady and unsteady
simulation of rotors of finite tip-speed ratio. Wind Energy, 19(7):1307–1323, 2016.

[14] G. R. Pirrung, H. Aa. Madsen, T. Kim, and J. Heinz. A coupled near and far wake model
for wind turbine aerodynamics. Wind Energy, 2016.

[15] G. R. Pirrung, V. Riziotis, H. Aa. Madsen, M. Hansen, and T. Kim. Comparison of a
coupled near- and far-wake model with a free-wake vortex code. Wind Energy Science,
2(1):15–33, 2017.

[16] A. Li, G. Pirrung, H. Aa. Madsen, M. Gaunaa, and F. Zahle. Fast trailed and bound
vorticity modeling of swept wind turbine blades. Journal of Physics: Conference Series,
1037(6), 2018.

134 -

[17] Torben J. Larsen and Helge Aagaard Madsen. On the way to reliable aeroelastic load
simulation on vawt’s. In Proceedings of EWEA 2013. EuropeanWind Energy Association
(EWEA), 2013. European Wind Energy Conference and Exhibition 2013, EWEA 2013 ;
Conference date: 04-02-2013 Through 07-02-2013.

[18] Esperanza Andrea Soto Sagredo, Jennifer Marie Rinker, and Rasmus Sode Lund.
Verification of numerical lidars in HAWC2: Analysis of nacelle- and hub-mounted lidars.
Number E-0239 in DTU Wind Energy E. DTU Wind Energy, Denmark, 2023.

- 135

A Example of main input file

1 begin Simulation;

2 time_stop 100;

3 solvertype 2 ; (sparse newmark)

4 on_no_convergence continue ;

5 logfile ./log/oc3_monopile_phase_1.log ;

6 animation ./animation/oc3_monopile_phase_1.dat;

7 ;

8 begin newmark;

9 deltat 0.02;

10 end newmark;

11 end simulation;

12 ;

13 begin new_htc_structure;

14 ; Optional - Calculated beam properties of the bodies are written to file:

15 beam_output_file_name ./log/oc3_monopile_phase_1_beam.dat;

16 ; Optional - Body initial position and orientation are written to file:

17 body_output_file_name ./log/oc3_monopile_phase_1_body.dat;

18 ; body_eigenanalysis_file_name ./eigenfrq/oc3_monopile_phase_1_body_eigen.dat;

19 ; structure_eigenanalysis_file_name ./eigenfrq/oc3_monopile_phase_1_strc_eigen.dat ;

20 ;---

21 ;

22 begin main_body; monopile 30m

23 name monopile ;

24 type timoschenko ;

25 nbodies 1 ;

26 node_distribution c2_def ;

27 damping 4.5E-02 4.5E-02 8.0E-01 1.2E-03 1.2E-03 4.5E-04 ;

28 begin timoschenko_input;

29 filename ./data/Monopile.txt ;

30 set 1 1 ; set subset 1=flexible,2=stiff

31 end timoschenko_input;

32 begin c2_def; Definition of centerline (main_body coordinates)

33 nsec 7;

34 sec 1 0.0 0.0 0.0 0.0 ; x,y,z,twist Mudline

35 sec 2 0.0 0.0 -0.1 0.0 ; x,y,z,twist

36 sec 3 0.0 0.0 -10.0 0.0 ; x,y,z,twist 50% between mudline and MSL

37 sec 4 0.0 0.0 -15.0 0.0 ; x,y,z,twist

38 sec 5 0.0 0.0 -20.0 0.0 ; x,y,z,twist MWL

39 sec 6 0.0 0.0 -25.0 0.0 ;

40 sec 7 0.0 0.0 -30.0 0.0 ; Monopile flange

41 end c2_def ;

42 end main_body;

43 ;

44 begin main_body; tower 80m

45 name tower ;

46 type timoschenko ;

47 nbodies 1 ;

48 node_distribution c2_def ;

49 damping_posdef 6.456E-4 6.45E-4 1.25E-3 1.4E-3 1.4E-3 1.25E-3 ;

50 ;damping_posdef Mx My Mz Kx Ky Kz , M´s raises overall level, K´s raises high freguency level

51 ;

52 begin timoschenko_input;

53 filename ./data/NREL_5MW_st.txt ;

54 set 1 1 ;

55 end timoschenko_input;

56 begin c2_def; Definition of centerline (main_body coordinates)

57 nsec 8;

58 sec 1 0.0 0.0 0.0 0.0 ; x,y,z,twist

59 sec 2 0.0 0.0 -10.0 0.0 ;

60 sec 3 0.0 0.0 -20.0 0.0 ;

61 sec 4 0.0 0.0 -30.0 0.0 ;

62 sec 5 0.0 0.0 -40.0 0.0 ;

136 -

63 sec 6 0.0 0.0 -50.0 0.0 ;

64 sec 7 0.0 0.0 -60.0 0.0 ;

65 sec 8 0.0 0.0 -77.6 0.0 ;

66 end c2_def ;

67 end main_body;

68 ;

69 begin main_body;

70 name towertop ;

71 type timoschenko ;

72 nbodies 1 ;

73 node_distribution c2_def ;

74 ; damping_posdef 9.025E-06 9.025E-06 8.0E-05 8.3E-06 8.3E-06 8.5E-05 ;

75 damping 2.50E-04 1.40E-04 2.00E-03 3.00E-05 3.00E-05 2.00E-04 ;

76 ;

77 ;Nacelle mass and inertia:

78 concentrated_mass 2 0.0 1.9 0.21256 2.4E5 1741490.0 1.7E5 1741490.0 ;

79 begin timoschenko_input;

80 filename ./data/NREL_5MW_st.txt ;

81 set 2 1 ;

82 end timoschenko_input;

83 begin c2_def; Definition of centerline (main_body coordinates)

84 nsec 2;

85 sec 1 0.0 0.0 0.0 0.0 ; x,y,z,twist

86 sec 2 0.0 0.0 -1.96256 0.0 ;

87 end c2_def ;

88 end main_body;

89 ;

90 begin main_body;

91 name shaft ;

92 type timoschenko ;

93 nbodies 1 ;

94 node_distribution c2_def ;

95 ; damping_posdef 7.00E-3 7.00E-03 7.00E-02 3.48E-04 3.48E-04 1.156E-03 ;

96 damping_posdef 7.00E-3 7.00E-03 7.00E-02 6.5E-04 6.5E-04 1.84E-02 ;

97 concentrated_mass 1 0.0 0.0 0.0 0.0 0.0 0.0 5025497.444 ;generator equivalent slow shaft

98 concentrated_mass 5 0.0 0.0 0.0 56780 0.0 0.0 115926 ; hub mass and inertia;

99 begin timoschenko_input;

100 filename ./data/NREL_5MW_st.txt ;

101 set 3 1 ;

102 end timoschenko_input;

103 begin c2_def; Definition of centerline (main_body coordinates)

104 nsec 5;

105 sec 1 0.0 0.0 0.0 0.0 ; Tower top x,y,z,twist

106 sec 2 0.0 0.0 1.0 0.0 ;

107 sec 3 0.0 0.0 2.0 0.0 ;

108 sec 4 0.0 0.0 3.1071 0.0 ; Main bearing

109 sec 5 0.0 0.0 5.0191 0.0 ; Rotor centre

110 end c2_def ;

111 end main_body;

112 ;

113 begin main_body;

114 name hub1 ;

115 type timoschenko ;

116 nbodies 1 ;

117 node_distribution c2_def ;

118 damping_posdef 2.00E-05 2.00E-05 2.00E-04 3.00E-06 3.00E-06 2.00E-05;

119 begin timoschenko_input;

120 filename ./data/NREL_5MW_st.txt ;

121 set 4 1 ;

122 end timoschenko_input;

123 begin c2_def; Definition of centerline (main_body coordinates)

124 nsec 2;

125 sec 1 0.0 0.0 0.0 0.0 ; x,y,z,twist

126 sec 2 0.0 0.0 1.5 0.0 ;

127 end c2_def ;

- 137

128 end main_body;

129 ;

130 begin main_body;

131 name hub2 ;

132 copy_main_body hub1;

133 end main_body;

134 ;

135 begin main_body;

136 name hub3 ;

137 copy_main_body hub1 ;

138 end main_body;

139 ;

140 begin main_body;

141 name blade1 ;

142 type timoschenko ;

143 nbodies 9 ;

144 node_distribution c2_def;

145 ; damping 3.5e-2 5.5e-4 5.0e-4 3.0e-4 0.5e-3 5.5e-3 ;

146 damping_posdef 1.16e-4 5.75e-5 6.1e-6 6.5e-4 5.1e-4 6.4e-4 ;

147 begin timoschenko_input ;

148 filename ./data/NREL_5MW_st.txt ;

149 set 5 1 ; set subset

150 end timoschenko_input;

151 begin c2_def; Definition of centerline (main_body coordinates)

152 nsec 19 ;

153 sec 1 0.0000 0.0000 0.000 0.000 ; x.y.z.

twist↩→

154 sec 2 -0.0041 0.0010 1.367 -13.308 ;

155 sec 3 -0.1058 0.0250 4.100 -13.308 ;

156 sec 4 -0.2502 0.0592 6.833 -13.308 ;

157 sec 5 -0.4594 0.1087 10.250 -13.308 ;

158 sec 6 -0.5699 0.1157 14.350 -11.480 ;

159 sec 7 -0.5485 0.0983 18.450 -10.162 ;

160 sec 8 -0.5246 0.0832 22.550 -9.011 ;

161 sec 9 -0.4962 0.0679 26.650 -7.795 ;

162 sec 10 -0.4654 0.0534 30.750 -6.544 ; 50%

blade radius↩→

163 sec 11 -0.4358 0.0409 34.850 -5.361 ;

164 sec 12 -0.4059 0.0297 38.950 -4.188 ;

165 sec 13 -0.3757 0.0205 43.050 -3.125 ;

166 sec 14 -0.3452 0.0140 47.150 -2.319 ;

167 sec 15 -0.3146 0.0084 51.250 -1.526 ;

168 sec 16 -0.2891 0.0044 54.667 -0.863 ;

169 sec 17 -0.2607 0.0017 57.400 -0.370 ;

170 sec 18 -0.1774 0.0003 60.133 -0.106 ;

171 sec 19 -0.1201 0.0000 61.500 -0.000 ;

172 end c2_def ;

173 end main_body;

174 ;

175 begin main_body;

176 name blade2 ;

177 copy_main_body blade1;

178 end main_body;

179 ;

180 begin main_body;

181 name blade3 ;

182 copy_main_body blade1 ;

183 end main_body;

184 ;--

185 ;

186 begin orientation;

187 begin base;

188 body monopile;

189 inipos 0.0 0.0 20.0 ; initial position of node 1

190 body_eulerang 0.0 0.0 0.0;

138 -

191 end base;

192 ;

193 begin relative;

194 body1 monopile last; indtil videre antages der internt i programmet at der

195 ; altid kobles mellen sidste knude body1 og første

196 ; knude body 2

197 body2 tower 1;

198 body2_eulerang 0.0 0.0 0.0;

199 end relative;

200 ;

201 begin relative;

202 body1 tower last;

203 body2 towertop 1;

204 body2_eulerang 0.0 0.0 0.0;

205 end relative;

206 ;

207 begin relative;

208 body1 towertop last;

209 body2 shaft 1;

210 body2_eulerang 90.0 0.0 0.0;

211 body2_eulerang 5.0 0.0 0.0; 5 deg tilt angle

212 ;body initial rotation velocity x.y.z.angle velocity[rad/s] (body 2 coordinates):

213 body2_ini_rotvec_d1 0.0 0.0 -1.0 0.5 ;

214 end relative;

215 ;

216 begin relative;

217 body1 shaft last;

218 body2 hub1 1;

219 body2_eulerang -90.0 0.0 0.0;

220 body2_eulerang 0.0 180.0 0.0;

221 body2_eulerang 2.5 0.0 0.0; 2.5deg cone angle

222 end relative;

223 ;

224 begin relative;

225 body1 shaft last;

226 body2 hub2 1;

227 body2_eulerang -90.0 0.0 0.0;

228 body2_eulerang 0.0 60.0 0.0;

229 body2_eulerang 2.5 0.0 0.0; 2.5deg cone angle

230 end relative;

231 ;

232 begin relative;

233 body1 shaft last;

234 body2 hub3 1;

235 body2_eulerang -90.0 0.0 0.0;

236 body2_eulerang 0.0 -60.0 0.0;

237 body2_eulerang 2.5 0.0 0.0; 2.5deg cone angle

238 end relative;

239 ;

240 begin relative;

241 body1 hub1 last;

242 body2 blade1 1;

243 body2_eulerang 0.0 0.0 0;

244 end relative;

245 ;

246 begin relative;

247 body1 hub2 last;

248 body2 blade2 1;

249 body2_eulerang 0.0 0.0 0.0;

250 end relative;

251 ;

252 begin relative;

253 body1 hub3 last;

254 body2 blade3 1;

255 body2_eulerang 0.0 0.0 0.0;

- 139

256 end relative;

257 ;

258 end orientation;

259 ;--

260 begin constraint;

261 ;

262 begin fix0; fixed to ground in translation and rotation of node 1

263 body monopile;

264 end fix0;

265 ;

266 begin fix1; fixed relative to other body in translation and rotation

267 body1 monopile last;

268 body2 tower 1;

269 end fix1;

270 ;

271 begin fix1;

272 body1 tower last ;

273 body2 towertop 1;

274 end fix1;

275 ;

276 begin bearing1; free bearing

277 name shaft_rot;

278 body1 towertop last;

279 body2 shaft 1;

280 bearing_vector 2 0.0 0.0 -1.0; x=coo (0=global.1=body1.2=body2) vector in body2

281 ; coordinates where the free rotation is present

282 end bearing1;

283 ;

284 begin fix1;

285 body1 shaft last ;

286 body2 hub1 1;

287 end fix1;

288 ;

289 begin fix1;

290 body1 shaft last ;

291 body2 hub2 1;

292 end fix1;

293 ;

294 begin fix1;

295 body1 shaft last ;

296 body2 hub3 1;

297 end fix1;

298 ;

299 begin bearing2;

300 name pitch1;

301 body1 hub1 last;

302 body2 blade1 1;

303 bearing_vector 2 0.0 0.0 -1.0;

304 end bearing2;

305 ;

306 begin bearing2;

307 name pitch2;

308 body1 hub2 last;

309 body2 blade2 1;

310 bearing_vector 2 0.0 0.0 -1.0;

311 end bearing2;

312 ;

313 begin bearing2;

314 name pitch3;

315 body1 hub3 last;

316 body2 blade3 1;

317 bearing_vector 2 0.0 0.0 -1.0;

318 end bearing2;

319 end constraint;

320 ;

140 -

321 end new_htc_structure;

322 ;---

323 begin wind ;

324 density 1.25;

325 wsp 8 ;

326 horizontal_input 1;

327 windfield_rotations 0.0 0.0 0.0 ; yaw, tilt, rotation

328 center_pos0 0.0 0.0 -90.00; hub_height

329 shear_format 3 0.12;

330 turb_format 1 ; 0=none, 1=mann,2=flex

331 tower_shadow_method 1;

332 tint 0.06 ;

333 scale_time_start 200;

334 wind_ramp_factor 0.0 200 0.5 1.0 ;

335 ;--

336 begin tower_shadow_potential;

337 tower_offset 0.0;

338 nsec 2;

339 radius 0.0 2.10;

340 radius -68.10 1.15;

341 end tower_shadow_potential;

342 ;--

343 ; This next part is only to be include in case of wake effects being studied

344 begin wakes;

345 nsource 35;

346 source_pos 2548 -2900 -90 ;

347 source_pos 2123 -2417 -90 ;

348 source_pos 1706 -1942 -90 ;

349 source_pos 1281 -1458 -90 ;

350 source_pos 857 975 -90 ; WT5

351 source_pos 432 491 -90 ; WT6

352 source_pos -425 -484 -90 ; WT8

353 source_pos -850 -968 -90 ; WT9

354 source_pos -1267 1458 -90 ;

355 source_pos -1700 1935 -90 ;

356 source_pos -2125 2419 -90 ;

357 source_pos 3556 -2533 -90 ;

358 source_pos 3131 -2049 -90 ;

359 source_pos 2706 -1565 -90 ;

360 source_pos 2281 1081 -90 ; WT16

361 source_pos 1602 308 -90 ; WT17

362 source_pos 1176 -176 -90 ; WT18

363 source_pos 751 -660 -90 ; WT19

364 source_pos 326 -1144 -90 ; WT20

365 source_pos -99 -1627 -90 ; WT21

366 source_pos 3915 -1427 -90 ;

367 source_pos 3486 -943 -90 ;

368 source_pos 3062 -455 -90 ;

369 source_pos 2405 -292 -90 ; WT25

370 source_pos 1927 -836 -90 ; WT26

371 source_pos 1502 -1319 -90 ; WT27

372 source_pos 1077 -1803 -90 ; WT28

373 source_pos 652 -2287 -90 ; WT29

374 source_pos 4235 -283 -90 ;

375 source_pos 3813 205 -90 ;

376 source_pos 3163 944 -90 ;

377 source_pos 2679 1495 -90 ;

378 source_pos 2254 1979 -90 ;

379 source_pos 1829 2463 -90 ;

380 source_pos 1404 2947 -90 ;

381 op_data 1.4252392 2 ; 1.8 -23.1 ;1.87 0.0 rad/sec, pitch [grader] opstrøms;

382 ble_parameters 0.10 0.008 0;

383 begin mann_meanderturb ;

384 create_turb_parameters 33.6 1 3.7 508 0.0 ; L, alfaeps,gamma,seed, highfrq compensation

385 filename_v ./free_sector_monopile/wake-meander/wake_meand_turb_wsp8_s508_t1800v.bin ;

- 141

386 filename_w ./free_sector_monopile/wake-meander/wake_meand_turb_wsp8_s508_t1800w.bin ;

387 box_dim_u 16384 1.7578125 ;

388 box_dim_v 32 90 ;

389 box_dim_w 32 90 ;

390 end mann_meanderturb;

391 ;

392 begin mann_microturb ;

393 create_turb_parameters 8.0 1.0 1.0 508 1.0 ; L, alfaeps,gamma,seed, highfrq compensation

394 filename_u ./free_sector_monopile/wake-micro/wake_turb_wsp8_s508_t1800u.bin ;

395 filename_v ./free_sector_monopile/wake-micro/wake_turb_wsp8_s508_t1800v.bin ;

396 filename_w ./free_sector_monopile/wake-micro/wake_turb_wsp8_s508_t1800w.bin ;

397 box_dim_u 128 1.0 ;

398 box_dim_v 128 1.0 ;

399 box_dim_w 128 1.0 ;

400 end mann_microturb;

401 end wakes;

402 ;---

403 begin mann;

404 create_turb_parameters 33.6 1 3.7 508 1.0 ; L, alfaeps,gamma,seed, highfrq compensation

405 filename_u ./free_sector_monopile/turb/turb_wsp8_s508_t1800u.bin ;

406 filename_v ./free_sector_monopile/turb/turb_wsp8_s508_t1800v.bin ;

407 filename_w ./free_sector_monopile/turb/turb_wsp8_s508_t1800w.bin ;

408 box_dim_u 16384 1.7578125 ;

409 box_dim_v 32 3.75;

410 box_dim_w 32 3.75;

411 end mann;

412 end wind;;

413 begin aero ;

414 nblades 3;

415 hub_vec shaft -3 ; rotor rotation vector (normally shaft component directed from

416 ; pressure to suction side)

417 link 1 mbdy_c2_def blade1;

418 link 2 mbdy_c2_def blade2;

419 link 3 mbdy_c2_def blade3;

420 ae_filename ./data/NREL_5MW_ae.txt;

421 pc_filename ./data/NREL_5MW_pc.txt;

422 induction_method 1 ; 0=none, 1=normal

423 aerocalc_method 1 ; 0=ingen aerodynamic, 1=med aerodynamic

424 aerosections 30 ;

425 ae_sets 1 1 1;

426 tiploss_method 1 ; 0=none, 1=prandtl

427 dynstall_method 2 ; 0=none, 1=stig øye method,2=mhh method

428 end aero ;

429 ;

430 ;---

431 begin hydro;

432 begin water_properties;

433 rho 1027 ; kg/m^3

434 gravity 9.81 ; m/s^2

435 mwl 0.0 ;

436 mudlevel 20.0 ;

437 water_kinematics_dll ./wkin_dll.dll ./htc_hydro/reg_airy_h6_t10.inp ;

438 end water_properties;

439 ;

440 begin hydro_element;

441 body_name monopile ;

442 hydrosections uniform 50 ; distribution of hydro calculation points from sec 1 to nsec

443 nsec 2;

444 sec 0.0 1.0 1.0 28.27 28.27 6.0 ; nr z Cm Cd V Vr width

445 sec 30.0 1.0 1.0 28.27 28.27 6.0 ; nr z Cm Cd V Vr width

446 end hydro_element;

447 end hydro;

448 ;

449 ;---

450 begin dll;

142 -

451 begin hawc_dll;

452 filename ./control/bladed2hawc.dll ;

453 dll_subroutine regulation ;

454 arraysizes 15 15 ;

455 deltat 0.02;

456 begin output;

457 general time ;

458 constraint bearing2 pitch1 1; angle and angle velocity written to dll

459 constraint bearing2 pitch2 1; angle and angle velocity written to dll

460 constraint bearing2 pitch3 1; angle and angle velocity written to dll

461 constraint bearing2 shaft_rot 1; angle and angle velocity written to dll (slow speed shaft)

462 wind free_wind 1 0.0 0.0 -90.55; local wind at fixed position: coo

463 general constant 97.0 ; generator exchange ratio

464 end output;

465 ;

466 begin actions;

467 body moment_int shaft 1 3 towertop 2 ;

468 end actions;

469 end hawc_dll;

470 ;

471 begin hawc_dll;

472 filename ./control/pitchservo_pos.dll ;

473 dll_subroutine servo ;

474 arraysizes 15 15 ;

475 deltat 0.02 ;

476 begin output;

477 general time ; 1

478 dll inpvec 1 2; 2

479 dll inpvec 1 3; 3

480 dll inpvec 1 4; 4

481 constraint bearing2 pitch1 1; angle and angle velocity written to dll 5,6

482 constraint bearing2 pitch2 1; angle and angle velocity written to dll 7,8

483 constraint bearing2 pitch3 1; angle and angle velocity written to dll 9,10

484 end output;

485 ;

486 begin actions;

487 body bearing_angle pitch1;

488 body bearing_angle pitch2;

489 body bearing_angle pitch3;

490 end actions;

491 end hawc_dll;

492 ;

493 begin hawc_dll;

494 filename ./control/damper.dll ;

495 dll_subroutine damp ;

496 arraysizes 15 15 ;

497 begin output;

498 general time ; 1

499 general constant 5.0;

500 general constant 10.0;

501 general constant -1.0E1 ;

502 mbdy state vel towertop 1 1.0 tower;

503 end output;

504 ;

505 begin actions;

506 mbdy force_ext towertop 2 1 towertop;

507 mbdy force_ext towertop 2 2 towertop;

508 end actions;

509 end hawc_dll;

510 end dll;

511 ;

512 ;--

513 ;

514 begin output;

515 filename ./res/oc3_monopile_phase_1 ;

- 143

516 ; time 390.0 450.0 ;

517 buffer 1 ;

518 general time;

519 data_format hawc_binary;

520 ;

521 constraint bearing1 shaft_rot 2; angle and angle velocity

522 constraint bearing2 pitch1 5; angle and angle velocity

523 constraint bearing2 pitch2 5; angle and angle velocity

524 constraint bearing2 pitch3 5; angle and angle velocity

525 aero omega ;

526 aero torque;

527 aero power;

528 aero thrust;

529 wind free_wind 1 0.0 0.0 -90.0; local wind at fixed position: coo

530 hydro water_surface 0.0 0.0 ; x,y gl. pos

531 mbdy momentvec towertop 1 2 towertop # yaw bearing ;

532 mbdy forcevec towertop 1 2 towertop # yaw bering ;

533 mbdy momentvec shaft 4 1 shaft # main bearing ;

534 mbdy momentvec blade1 3 1 blade1 # blade 1 root ;

535 mbdy momentvec blade1 10 1 local # blade 1 50% local e coo ;

536 mbdy momentvec hub1 1 2 hub1 # blade 1 root ;

537 mbdy momentvec hub2 1 2 hub2 # blade 2 root ;

538 mbdy momentvec hub3 1 2 hub3 # blade 3 root ;

539 mbdy state pos towertop 1 1.0 global # tower top flange position ;

540 mbdy state pos tower 1 0.0 global # tower MSL position ;

541 mbdy state pos blade1 18 1.0 blade1 # blade 1 tip pos ;

542 mbdy state pos blade2 18 1.0 blade2 # blade 2 tip pos ;

543 mbdy state pos blade3 18 1.0 blade3 # blade 3 tip pos ;

544 mbdy state pos blade1 18 1.0 global # blade 1 tip pos ;

545 aero windspeed 3 1 1 63.0; wind seen from the blade:

546 ; coo(1=local ae,2=blade,3=global,4=rotor polar),

547 aero windspeed 3 1 2 63.0;

548 aero windspeed 3 1 3 63.0;

549 aero alfa 1 45.0;

550 aero alfa 2 45.0;

551 aero alfa 3 45.0;

552 mbdy momentvec towertop 1 1 tower # tower top -1: below top mass ;

553 mbdy forcevec towertop 1 1 tower # tower top -1: below top mass ;

554 mbdy momentvec tower 1 1 tower # tower MSL ;

555 mbdy forcevec tower 1 1 tower # tower MSL ;

556

557 ; mbdy statevec_new mbdyname center coo elastic/absolute r sign xy_vector:

558 mbdy statevec_new blade1 c2def blade1 elastic 88.0 1.d0 0.0 0.0

559 mbdy statevec_new blade1 default blade1 elastic 88.0 1.d0 0.0 0.0 ;

560 mbdy statevec_new blade1 c2def blade1 absolute 88.0 1.d0 0.0 0.0 ;

561 mbdy statevec_new blade1 default blade1 absolute 88.0 1.d0 0.0 0.0 ;

562 mbdy statevec_new blade1 default global absolute 88.0 1.d0 0.0 0.0 ;

563

564 ; mbdy forcemomentvec_interp mbdy_name center coo_mbdy curved_distance_from_orig sign

565 mbdy forcemomentvec_interp blade1 default blade1 5 1.0 # blade1 R= 5 ;

566 mbdy forcemomentvec_interp blade1 default blade1 55 1.0 # blade1 R=55 ;

567 mbdy forcemomentvec_interp blade1 c2def local_aero 35 1.0 # blade1 R=35 ;

568 mbdy forcemomentvec_interp blade1 c2def local_aero 60 1.0 # blade1 R=60 ;

569 mbdy forcemomentvec_interp blade1 c2def local_element 50 1.0 # blade1 R=50 ;

570 ; an example where the forces and moments are extracted at the c2def instead of the actual node:

571 mbdy forcemomentvec_interp blade1 c2def blade1 5 1.0 # blade1 R= 5 ; ()

572 ;

573 dll outvec 1 1 # time;

574 dll outvec 1 2 # pitch angle 1;

575 dll outvec 1 3 # pitch vel 1;

576 dll outvec 1 4 # pitch angle 2;

577 dll outvec 1 5 # pitch vel 2;

578 dll outvec 1 6 # pitch angle 3;

579 dll outvec 1 7 # pitch vel 3;

580 dll outvec 1 8 # gen. azi slow;

144 -

581 dll outvec 1 9 # gen. speed slow;

582 dll outvec 1 10 # free wind x;

583 dll outvec 1 11 # free wind y;

584 dll outvec 1 12 # free wind z;

585 dll outvec 1 13 # gear ratio;

586 dll inpvec 1 1 # Mgen slow;

587 dll inpvec 1 2 # pitchref 1;

588 dll inpvec 1 3 # pitchref 2;

589 dll inpvec 1 4 # pitchref 3;

590 dll inpvec 1 7 # F;

591 dll inpvec 1 8 # Mechanical power generator [kW];

592 dll inpvec 1 10 # Pitch rate [rad/s];

593 dll inpvec 2 1 # pitch 1;

594 dll inpvec 2 2 # pitch 2;

595 dll inpvec 2 3 # pitch 3;

596 dll outvec 2 1 # time;

597 dll outvec 2 2 # pitchref 1;

598 dll outvec 2 3 # pitchref 2;

599 dll outvec 2 4 # pitchref 3;

600 dll outvec 2 5 # pitch angle 1;

601 dll outvec 2 6 # pitch speed 1;

602 dll outvec 2 7 # pitch angle 2;

603 dll outvec 2 8 # pitch speed 2;

604 dll outvec 2 9 # pitch angle 3;

605 dll outvec 2 10 # pitch speed 3;

606 end output;

607 ;

608 exit;

- 145

B User guide for user-wind-dll

A user defined DLL can be used to provide additional wind velocity on top of what is already
defined by wind input in HAWC2. During simulation, HAWC2 calls the DLL with position as
argument, and the DLLmust provide the wind velocity in that position on return. Apart from the
position, HAWC2 also parses time and user-specified arguments to the DLL - the user-specified
arguments are defined in the same output block format as is used for type2_dlls and hawc_dlls
and as regular output.

B.1 Htc file input

Application of the DLL is defined inside the begin wind block as shown below.

1 begin wind ;

2 .

3 begin user_wind_dll ;

4 filename 2-test.dll;

5 subroutine wind_dll_getwindspeed ;

6 refsys 0 ; Reference coordinates for position (in) and velocity (in/out),

7 ; 0=meteorological(default),

8 ; 1=global

9 begin output ;

10 general constant 1.0 ;

11 dll inpvec 1 1 ;

12 constraint bearing1 shaft_rot 1 only 2 ;

13 mbdy momentvec shaft 1 1 shaft only 3 ;

14 end output ;

15 end user_wind_dll ;

16 .

17 end wind

The output arguments that can be used inside the begin output block are limited general,
dll, constraint, and mbdy.

B.2 DLL interface definition

The DLL subroutine is called each iteration with these arguments: - time, (double). - position
vector: Dependent on the key refsys in the user_wind_dll block (see above), the position
vector provided is either meteorological or global coordinates, (double(3)). - Nof arguments in
the begin output in the user_wind_dll block, (nargs, integer). - Argument vector defined in
the begin output in the user_wind_dll block, (double(nargs)). - Wind velocity: On input,
the vector contains the wind velocity contribution from the whatever is defined in the begin
wind block, i.e. the sum of mean wind, wind shear, etc. On output, the vector must contain the
extra(!!, NOT the total) wind contribution in the refsys coordinate system , (double(3))

The DLL subroutine interface is defined as follows:

1 interface
2 subroutine user_wind_dll_call(time, pos, nargs, args, wsp)

3 !dec$ attributes c :: user_wind_dll_call

4 double precision :: time ! time

5 double precision :: pos(3) ! position of lookup point (refsys coordinates)

6 integer :: nargs ! nof user arguments (provided via dll output

block)↩→

7 double precision :: args(nargs) ! user arguments (provided via dll output block)

8 double precision :: wsp(3) ! lookup windspeed,

9 ! on input : wind velocity in <pos>

(refsys coord.)↩→

146 -

10 ! on output: user velocity contribution

(refsys coord.)↩→

11 !dec$ attributes reference :: time, pos, nargs, args, wsp

12 end subroutine
13 end interface

Note that the effect of tower shadow is applied after the call to the DLL.

B.2.1 FORTRAN example

1 subroutine wind_dll_getwindspeed(time,pos,nvar,var,wsp)

2 !dec$ attributes c,dllexport, alias:"wind_dll_getwindspeed" ::

wind_dll_getwindspeed↩→

3 !gcc$ attributes cdecl :: wind_dll_getwindspeed

4 !gcc$ attributes dllexport :: wind_dll_getwindspeed

5 ! variables

6 integer nvar

7 double precision time,pos(*),var(*),wsp(*)

8 !dec$ attributes reference :: time, pos, var, wsp

9

10 ! implementation

11 print*,"nvar = ",nvar

12 print*,"time = ",time

13 print*,"pos = ", pos(1:3)

14 print*,"wsp = ", wsp(1:3)

15 wsp(1:3) = (/0.0, 0.0, 0.0/)

16 end subroutine wind_dll_getwindspeed

The DLL can be built from the FORTRAN code above using the GNU compiler syntax:

1 gfortran -shared -static -o <file>.dll -fno-underscoring <file>.f90

B.2.2 C example

1 #include <stdio.h>

2 __declspec(dllexport) void wind_dll_getwindspeed(double* time, double* pos, int* nvar,

double* var, double* wsp)↩→

3 {

4 int i;

5 // implementation

6 printf("nvar = %d\n", *nvar);

7 printf("time = %f\n", *time);

8 printf("pos = (%f, %f, %f)\n", pos[0], pos[1], pos[2]);

9 printf("wsp = (%f, %f, %f)\n", wsp[0], wsp[1], wsp[2]);

10 for (i = 0; i < 2; i++)

11 {

12 wsp[i] = 0.0;

13 }

14 }

The DLL can be built from the C code above using the GNU compiler syntax: “‘ gcc -shared
-static -o .dll .c

- 147

C Fit of structural damping

Please note that this feature is not easy to use, and some iterations must be foreseen in order to
end at satisfactory result.

The aim of this feature is to develop a method to fit the damping parameters in a HAWC2 model
in such a way that desired damping ratios are obtained for specified eigenmodes. Further, it is
the aim that the formulation can be used in both HAWC2 and HAWCStab2.

The method is described below in Section C.1. It fits element stiffness matrices and saves them
to file so that they can be used for bodies using the damping method "damping_file <damping
file> ;" (where the <damping file> is generated by the method). This requires a special block
inside the htc file which must be placed after the "new_htc_structure" block:

Obl. Command name Explanation
* begin damping_fit ; First line in damping fit block.
* damping_file Name of damping file. This file nameMUSTmatch the <damping

file> used for the "damping_file" method in the "main_body"
block.

twin_bodies The two body names given as arguments will share damping
properties. This is used e.g. to specify the same damping for all
the blades on the rotor.
1. Body name for 1st twin.
2. Body name for 2nd twin.

* cmd_solver 1. Command executed by HAWC2 which does the actual fitting,
(e.g. python.exe damping_fit.py ;). If you rely on a virtual
Python environment, make sure to activate this first before
running HAWC2 within this environment. Within this Python
environment the numpy and scipy packages are required to be
installed.

* mode Repeated line for each mode to be fitted:
1. Mode number.
2. Damping ratio.

-
* end damping_fit ; Last line in damping fit block.

The example below shows the setup for fitting the damping of a single blade with requested
damping ratios specified for the first six modes. 0.5% damping ratio (i.e. approx. 3% log.decr.)
is requested for modes 1 and 2, 1% for modes 3 and 4, and 2% for modes 5 and 6. Note the use
of the damping file (blade.dmp) in two locations which links the damping fit only to include
blade damping in the fit. If other bodies were present in the example, the damping specified for
those bodies would enter the total damping fit, but only the damping parameters for the blade
will change the total damping.

1 ;---

2 begin new_htc_structure;

3 ;---

4 begin main_body;

5 name blade1 ;

6 type timoschenko ;

7 nbodies 10 ;

8 node_distribution c2_def;

9 damping_file blade.dmp ;

10 begin timoschenko_input ;

11 filename ./data/DTU_10MW_RWT_Blade_st.dat;

12 set 1 1 ; set subset

148 -

13 end timoschenko_input;

14 begin c2_def; Definition of centerline (main_body coordinates)

15 nsec 27 ;

16 sec

1 0.00000E+00 7.00600E-05 4.44089E-16 -1.45000E+01 ;↩→

17 ..

18 ..

19

sec 27 -8.98940E-02 -3.33685E+00 8.63655E+01 3.42796E+00 ;↩→

20 end c2_def ;

21 end main_body;

22 ;---

23 begin orientation;

24 begin base;

25 body blade1;

26 inipos 0.0 0.0 0.0 ; initial position of node 1

27 body_eulerang 0.0 0.0 0.0;

28 end base;

29 end orientation;

30 ;---

31 begin constraint;

32 begin fix0; fixed to ground in translation and rotation of node 1

33 body blade1;

34 end fix0;

35 end constraint;

36 end new_htc_structure;

37 ;---

38 begin damping_fit ;

39 damp_file blade.dmp ;

40 cmd_solver C:\Users\anmh\Anaconda3\Scripts\conda.exe run python damping_fit.py ;

41 mode 1 0.005 ; Damping ratio of mode 1

42 mode 2 0.005 ; etc.

43 mode 3 0.01 ;

44 mode 4 0.01 ;

45 mode 5 0.02 ;

46 mode 6 0.02 ;

47 end damping_fit ;

48 ;---

A fully functional example is available for download at https://gitlab.windenergy.dtu.
dk/HAWC2Public/examples/-/tree/master/hawc2/structure/damping_fit/IEA_15MW_

RWT.

C.1 Formulation

The linearised HAWC2 EOMs are of the usual 2nd order form:

M x + C x +K x = 0 (C.5)

The solution to the undamped eigenvalue problem (C = 0) are defined by the eigenvectors �
and diagonal eigenfrequency matrix
. The eigensolution fulfills the identity M�
2 = K�.
By using the eigenvectors as basis, x can be transformed as x(t) = �U(t). By using the above
relations, C.5 can be manipulated as:

¥U + �−1M−1C�U +
2 U = 0 (C.6)

Note that the undamped part of C.6 is a diagonal system, and that the total set of equations can
de uncoupled if the damping matrix part is also a diagonal matrix. If we choose this matrix as

- 149

https://gitlab.windenergy.dtu.dk/HAWC2Public/examples/-/tree/master/hawc2/structure/damping_fit/IEA_15MW_RWT
https://gitlab.windenergy.dtu.dk/HAWC2Public/examples/-/tree/master/hawc2/structure/damping_fit/IEA_15MW_RWT
https://gitlab.windenergy.dtu.dk/HAWC2Public/examples/-/tree/master/hawc2/structure/damping_fit/IEA_15MW_RWT

2 Z
 (Z is a diagonal matrix), then the system damping matrix C can be calculated as

C = 2�MZ
�
−1 (C.7)

Unfortunately, such a damping matrix cannot directly be used in neither HAWC2 nor in
HAWCStab2, so something else must be done. Instead, the damping of one mode at a time
is formulated as function of element damping matrices:

¥Ui + (Wi
TMWi)−1 (Wi

TCWi) Ui +
2
i Ui = 0 (C.8)

where all variables with sub-script i relate to the i’th eigenmode. The damping coefficient in
(C.8) must then fulfill the equation

(Wi
TMWi)−1 (Wi

TCWi) = 2Zi
i (C.9)

The system damping matrix, C, is assembled based on element damping matrices cj (for the
j’th element), where the element damping matrices are defined as having the same eigenvectors
as the element stiffness matrices. By using this formulation, the structure only dissipates energy
when it is deformed and not during rigid body motion.

cj = vjxjvT
j (C.10)

where vj is the eigenvectors of the j’th stiffness matrix (or rather the six eigen vectors that
have non-zero eigenvalues) and xj is a 6 × 6 diagonal matrix containing the unknown damping
parameters.

For each eigenmode that needs to be fitted, (5) provides one equation that needs to be fulfilled,
and the unknowns are the six element damping parameters, 3806(xj), for all elements. Further,
in order for the element damping matrices to be positive semi-definite, xj ≥ 0 for all diagonal
components xj and for all elements (all j). The equations in (C.9) are linear in x and the (one of
many!) solution is found by solving the optimization problem

min
FAC.x

(
|W (A x − Z) |2

)
, B.C. x ≥ 0 (C.11)

where x are the element damping parameters for all elements collected in a vector, Z are the
(user-specified) damping ratios prescribed for the individual modes, A are the coefficients to x
in accordance with (C.9), and W is a diagonal weighting matrix which is included in order to
weigh the individual eigenmodes in the optimization.

C.2 HAWC2 implementation

Currently, the solution of (C.11) is handled by an external call to a python script outside of
HAWC2. This means that HAWC2 calculates the matrices and vectors in (C.11) and exports
those to a binary file (currently named ’dfit_a.bin’). This binary file is then handled in a Python
script that reads the system, solves (C.11) for x and writes back the solution to file (currently
named ’dfit_x.bin’). This solution is then read back into HAWC2 and the resulting element
damping matrices are calculated and written to file for subsequent use in HAWC2 simulations.

Note that even though only a few of the total number of eigenmodes have prescribed damping
ratios (specified in the htc-file), all eigenmodes are included in the outputted binary file, however,
the components in W associated with non-prescribed modes are all set to zero.

The Python script is listed below from which the individual binary file formats can be deduced,
if needed. This script is part of the distributed HAWC2 files.

150 -

1 #---

2 # -*- coding: utf-8 -*-

3 """

4 Damping fit for HAWC2

5

6 This script finds the parameters for structural HAWC2 damping type

7 "damp_file", based on the mode damping matrix, A, calculated by HAWC2

8 and written to file "dfit_a.bin".

9

10 Each row of the A matrix corresponds to a mode shape in the HAWC2 model,

11 ordered in increasing order of eigenfrequency, i.e. first row corresponds to

12 the mode with the lowest eigenfrequency. By multiplication with the damping

13 parameter vector, x, gives the damping rati0 vector, d = (A*x).

14

15 The purpose of this script is then to find the best fit of x which gives the

16 specified damping ratio for the individual modes using the constraint that

17 x>0 for all x.

18

19 The A matrix contains all modes, and not all modes can be fitted for any

20 damping level. Normally the first (say 10) modes are of interest. This is

21 handled by the weighting vector, w, below. See code below for further details.

22

23 """

24

25 import numpy as np
26 import struct
27 from scipy.optimize import nnls

28

29 def damping_fit():

30

31 wmin = 1.e-6

32

33 # Read A matrix from file

34 f=open('dfit_a.bin','rb')

35 (nr,nc) = struct.unpack('ii',f.read(8))

36 ntot = nr*nc

37 data = np.zeros(ntot,dtype=np.dtype('f8'))

38 for i in range(ntot):

39 (data[i],) = struct.unpack('d',f.read(8))

40 A = np.reshape(data,[nr,nc], order='F')

41

42 # Read target damping for optimization

43 d = np.zeros(nr,dtype=np.dtype('f8'))

44 for i in range(nr):

45 (d[i],) = struct.unpack('d',f.read(8))

46 w = np.zeros(nr,dtype=np.dtype('f8'))

47 for i in range(nr):

48 (w[i],) = struct.unpack('d',f.read(8))

49 if w[i] == 0.0:

50 w[i] = wmin

51 f.close()

52

53 # Solve

54 res = nnls(np.matmul(np.diag(w),A), np.matmul(np.diag(w),d))

55

56 # Write results to file

57 f = open('dfit_x.bin','wb')

58 f.write(np.array([nc,1],dtype='i4'))

59 f.write(res[0])

60 f.close()

61

62 # Check solution

63 dfit = np.matmul(A,res[0])

64 print(('*'+'{0:1s}'*36+'*').format('*'))

- 151

65 print('*{:^36s}*'.format('Damping fit result'))

66 print(('*'+'{0:1s}'*36+'*').format('*'))
67 print('*{:^8s}{:^14s}{:^14s}*'.format('Mode','Target','Fit'))
68 for i in range(nr):

69 if w[i] > wmin:

70 print('*{:^8d}{:^14.3e}{:^14.3e}*'.format(i+1,d[i],dfit[i]))
71 print(('*'+'{0:1s}'*36+'*').format('*'))
72

73 return res

74

75 #-----------

76 # DO IT....

77 #-----------

78 res = damping_fit()

79 #---

C.3 Usage considerations

C.3.1 Consistently use matched input and damping file

The result of the structural damping fitting procedure is a main body element damping matrix
file that will match the user defined damping for the relevant modes. This file is specific for
a given combination of nodes, number of bodies and structural input (st-file). If any changes
are made in either of these inputs the element damping matrix file will have to be redefined
based on the procedure outlined here. Users are especially cautioned to carefully track that the
number of bodies used for generating the damping fit is also the same number of bodies used
in subsequent simulations.

C.3.2 Tune on full or main body only models

It is more likely to obtain a good damping fit for many frequencies when tuning the damping for
a HAWC2 model containing only the main body of interest. When a model with several main
bodies is used (tower, blades, etc) the optimisation problem becomes inherently more difficult
to solve. When using multiple main bodies, make sure to verify that the targeted damping ratios
in the damping_fit section relate to the total systems modes (1st and 2nd modes likely to be
the tower, etc), as opposed to when using a model that only contains the main body of interest.
The user is responsible for tracking which mode number relates to which body. For example,
fitting the damping for tower modes while only adjusting the damping coefficients related to the
blades is not likely to give meaningful results. It is therefore recommended to only list/target
mode numbers of the body at interest, and leave out the others (especially rigid body modes) in
the damping_fit section.

C.3.3 Number of modes to target

When fitting to a low number of modes a very good result can be expected. The more modes a
user attempts to fit a damping value to, the more difficult the trade-off becomes. In those cases an
advanced user could consider changing the weights W in the example script damping_fit.py
(defined as w, see above) to obtain a specific trade-off in which some modes are allowed to differ
more compared to others with respect to the requested target values.

152 -

D ESYSMooring user guide

ESYSMooring is the DLL that allows you to model mooring lines and guy wires in HAWC2.

This DLL implements the equations of motion of a mooring line element. An extended
description of the mathematical model can be found in Hansen and Kallesøe 1. Via the
ESYSMooring, a user can specify and define two main components, that univocally define
a mooring system: the mooring lines themselves (named elasticbar) and a set of constraints
where the mooring line can be fixed either to the global reference system, to another node of the
HAWC2 structure, or to another mooring line, to generate more complex mooring geometries.
We will hereafter see how to specify lines and how to connect them through constraints.

D.1 Definition of the mooring line

begin ext_sys ;

module ElasticBar ;

name <line name> ;

dll ESYSMooring.dll ;

ndata <n> ;

data nelem <n> ;

data mass <ma> <mw> ;

data start_pos <X> <Y> <Z> ;

data end_pos <X> <Y> <Z> ;

data cdp_cdl_cm <cdp> <cdl> <cm> ;

data axial_stiff <EA> ;

data read_write_initcond_file <fname> ;

data read_write_initcond <rd> <wr> ;

data bottom_prop <z0> <d0> <dr> ;

data damping_ratio <sdr> ;

data apply_wave_forces <wa> ;

data apply_wind_forces <wi> ;

data output position <node> ;

data output force <node> ;

data mass_summary <file> ;

data end ;

end ext_sys

Obl. Command name Explanation
* begin ext_sys ; First line in ESYSMooring.

module ElasticBar ; Module ID (Fixed)
name <line name> Name of system, used as a reference. It becomes especially useful

when you have more than one mooring system.
dll ESYSMooring.dll DLL file name (including path)
ndata <n> Number of data input lines below, including the "data end" line.

Remember that commented lines are excluded from the count.
data nelem <n> Numer of elements by which we discretize the mooring line
data mass <ma> <mw> Mass per length [kg/m].

1. <ma> : mass per length in air
2. <mw> : mass per length in water, normally computed as mw -
rho_water*A, where A is the cross sectional area of the line

1A.M.Hansen and B.Kallesøe "Detailed and reduced models of dynamic mooring systems", In: Hansen, M. H.,
and Zahle, F. (2011). Aeroelastic Optimization of MWWind Turbines. Roskilde: Danmarks Tekniske Universitet, Risø
Nationallaboratoriet for Bæredygtig Energi. Denmark. Forskningscenter Risoe. Risoe-R; No. 1803(EN), link

- 153

http://orbit.dtu.dk/files/6562890/ris-r-1803.pdf

Obl. Command name Explanation
data start_pos <X> <Y> <Z> X-Y-Z-coordinate for first node (global coordinates)
data end_pos <X> <Y> <Z> X-Y-Z-coordinate for last node (global coordinates)
data cdp_cdl_cm<cdp><cdl>
<cm>

The hydrodynamic coefficients of the line. For drag, the velocity
in each node is decomposed into a perpendicular and an axial
component, and the force/length in each of the directions is
calculated as: q = cd*abs(v)*v, so cd-units=[#/</(</B)2]. The
same principle is used for cm, except only the perpendicular
direction is active, ie. cm-unit [#/</(</B2)]
1. <cdp> Drag coefficient perpendicular to the element.
2. <cdl> Drag coefficient along the element.
3. <cm> Mass coefficient.

data axial_stiff <EA> Axial stiffness of line [#]
data read_write_initcond_file
<fname>

File name where initial conditions are read/written to
(default="ESYSMooring_init.dat")

data read_write_initcond
<rd> <wr>

Read/write position of the nodes. If <rd>=1, the initial positions
of the nodes are read from file ESYSMooring_init.dat ; at the
start of simulation. If <wr>=1, the node positions are written to
same file when simulation ends.

data bottom_prop <z0> <d0>
<dr>

Bottom properties.

1. <z0> [m] is the Z coordinate of the bottom (in global
coordinates)
2. <d0> [m] is the penetration depth into the bottom. When an
element lies on the bottom exposed to gravity and buoyancy (used
to define the bottom sprinf stiffness)
3. <dr> [-] defines the bottom damper system as the damping
ratio of the element lying on the bottom. ; NOTE: IF
BOTTOM PROPERTIES ARE NOT NEEDED, MAKE <z0>
SUFFICIENTLY LARGE TO AVOID BOTTOM CONTACT.

data damping_ratio <sdr> Structural damping ratio, defined as the damping ratio of 1st axial
mode of the free-free line [-]

data apply_wave_forces <wa> If <wa>=1, wave kinematics is read and used to calculate
drag/added mass forces. This option is mutually exclusive with
apply_wind_forces

data apply_wind_forces <wi> If <wi>=1, wind speed read and used to calculate drag/added
mass forces.

data output position <node> Write global position of node number <node> to output file. (only
if "ESYS <line name> ;" is defined in output block of htc file.)

data output force <node> Write force of node number <node> to output file. (only if "ESYS
<line name> ;" is defined in output block of htc file.)

data mass_summary <file> Write summary of all ElasticBar objects to <file>
data end MUST be the last line in the input block

D.2 Constraints

There are 4 types of constraints, that are able to describe different ways to anchor the mooring
lines.

• Bar fixed to bar: a mooring element is fixed to another mooring element

• Bar fixed to global: a mooring element is fixed to a global reference

• Bar fixed to body: a mooring line is fixed to an HAWC2 beam node

154 -

• Bar fixed to body relative: a mooring line is fixed to an HAWC2 beammode, but is possible
to specify an offset from a certain node.

Each one of those has a slightly different interface.

D.2.1 Bar fixed to bar (cstrbarfixedtobar)

begin dll ;

dll .\ESYSMooring.DLL ;

init cstrbarfixedtobar_init ;

update cstrbarfixedtobar_update ; Update procedure name

neq 3 ; NOF constraint equations

nbodies 0 ; NOF bodies involved

nesys 2 ; NOF ESYSs involved

esys_node line1 10 ; ESYS name and node number for 1st node

esys_node line2 1 ; ESYS name and node number for 2nd node

end dll ;

Obl. Command name Explanation
* begin dll ; First line in ESYSMooring.

dll <name> DLL name
init cstrbarfixedtobar_init Init procedure name. Not to be altered
update
cstrbarfixedtobar_update

Update procedure name. Not to be altered

neq <n> Number of constraint equations, normally 3.
nbodies <n> Number of bodies involved. This is zero for this type of constraint,

as it’s a line-to-line constraint.
nesys <n> Number of esys involved. This is different from zero for this type

of constraint, normally 2 if two lines are involved.
esys_node <name> <node> ESYS name and node number for a node. This command needs

to be specified more than once, for all the lines involved.
<name> is the name specified in the definition block for the line
under consideration, see subsection D.1.
<node> is an integer specifying the node nr.

D.2.2 Bar fixed to bar (cstrbarfixedtoglobal)

begin dll ;

dll .\ESYSMooring.DLL ; DLL name

init cstrbarfixedtoglobal_init ; Init procedure name

update cstrbarfixedtoglobal_update ; Update procedure name

neq 3 ; NOF constraint equations

nbodies 0 ; NOF bodies involved

nesys 1 ; NOF ESYSs involved

esys_node line1_1 1 ; ESYS name and node number

end dll ;

Obl. Command name Explanation
* begin dll ; First line in ESYSMooring.

dll <name> DLL name
init cstrbarfixedtoglobal_init Init procedure name. Not to be altered

- 155

Obl. Command name Explanation
update
cstrbarfixedtoglobal_update

Update procedure name. Not to be altered

neq <n> Number of constraint equations, normally 3.
nbodies <n> Number of bodies involved. This is zero for this type of constraint,

as the line is fixed to the global reference system.
nesys <n> Number of esys involved. This is 1 for this type of constraint.
esys_node <name> <node> ESYS name and node number for a node. This command needs

to be specified once for every node that is considered fixed to the
global reference system.
<name> is the one specified in the line definition block, see
subsection D.1.
<node> is an integer specifying the node nr.

D.2.3 Bar fixed to bar (cstrbarfixedtobody)

begin dll ;

ID 100.0 ; time to satisfy constraint [sec]

dll .\ESYSMooring.DLL ; DLL name

init cstrbarsfixedtobody_init ; Init procedure name

update cstrbarsfixedtobody_update ; Update procedure name

neq 3 ; NOF constraint equations

nbodies 1 ; NOF bodies involved

nesys 1 ; NOF ESYSs involved

mbdy_node arm1 2 ; Bode name and node number

esys_node line1_1 31 ; ESYS name and node number

end dll

Obl. Command name Explanation
* begin dll ; First line in ESYSMooring.

ID <time> Time at which the constraint should be satisfied. This is useful
when initializing the mooring system, see subsection D.3.

dll <name> DLL name
init cstrbarsfixedtobody_init Init procedure name. Not to be altered
update
cstrbarsfixedtobody_update

Update procedure name. Not to be altered

neq <n> Number of constraint equations, normally 3.
nbodies <n> Number of bodies involved. This is different from zero for this

type of constraint, as there should at least be a body involved.
nesys <n> Number of esys involved. This is 1 or more for this type of

constraint.
esys_node <name> <node> ESYS name and node number for a node. This command needs

to be specified once for each node of the linex involved in the
constraint.
<name> is the one specified in the line definition block, see
subsection D.1.
<node> is an integer specifying the node nr.

nbodies <n> Number of bodies involved in the constraint
mbdy_node <name> <node> multibody name and node number for a node. This command

needs to be specified once for each node of themultibody involved
in the constraint.
<name> is the one specified in the multibody definition block.
<node> is an integer specifying the node nr.

156 -

D.2.4 Bar fixed to bar (cstrbarfixedtobodyrelative)

begin dll ;

ID 0.0 1.0 0.0 100.0 ; vector from body node (in body coordinates)(x,y,z)([m],[m],[m]), time to satisfy constraint [sec]

dll .\ESYSMooring.DLL ; DLL name

init cstrbarsfixedtobodyrelative_init ; Init procedure name

update cstrbarsfixedtobodyrelative_update ; Update procedure name

neq 3 ; NOF constraint equations

nbodies 1 ; NOF bodies involved

nesys 1 ; NOF ESYSs involved

mbdy_node arm1 2 ; Bode name and node number

esys_node line1_1 31 ; ESYS name and node number

end dll

Obl. Command name Explanation
* begin dll ; First line in ESYSMooring.

ID <x> <y> <z> <time> Vector from the body node (in body coordinates), units [m] and
time [sec] at which the constraint should be satisfied. This is
useful when initializing the mooring system, see subsection D.3.

dll <name> DLL name
init cstrbarsfixedtobody_init Init procedure name. Not to be altered
update
cstrbarsfixedtobody_update

Update procedure name. Not to be altered

neq <n> Number of constraint equations, normally 3.
nbodies <n> Number of bodies involved. This is different from zero for this

type of constraint, as there should at least be a body involved.
nesys <n> Number of esys involved. This is 1 or more for this type of

constraint.
esys_node <name> <node> ESYS name and node number for a node. This command needs

to be specified once for each node of the linex involved in the
constraint.
<name> is the one specified in the line definition block, see
subsection D.1.
<node> is an integer specifying the node nr.

nbodies <n> Number of bodies involved in the constraint
mbdy_node <name> <node> multibody name and node number for a node. This command

needs to be specified once for each node of themultibody involved
in the constraint.
<name> is the one specified in the multibody definition block.
<node> is an integer specifying the node nr.

D.3 Procedure for mooring initialization

When initializing a simulation with a mooring system, it is often important to initialize the
connection with the mooring system as well. The initial position and tension of the lines should
be as close as possible to the equilibrium position, otherwise quite large oscillations can be
triggered at the beginning of the simulation, which, depending on the natural frequencies of
the system and on the damping level, can last for many seconds, unnecessarily increasing the
transient time and possibly posing threats to the stability and convergence of the simulation.

Unless the configuration of the lines is simple (e.g. a vertical tendon or a taut line with a certain
angle), the initial position of the line elements is normally difficult to precompute. The strategy
that is here suggested therefore consists in two steps:

- 157

1. Run a line initialization simulation and store the final position of the lines

2. Read in the stored line position and use it as initial condition for the mooring system in the
production simulation

An example on the procedure is available in our public example library here. The two steps are
here described in more detail:

1. Line initialization: In the line initialization simulation, we start with the lines in a simple,
unloaded position. For a catenary line, it could be a position forwhich it is lying flat on the seabed.
We then make use of the time option in the cstrbarfixedtobody and cstrbarfixedtobodyrelative
constraints, see subsubsection D.2.3 and subsubsection D.2.4 to fix a line to a body after a
certain specified time. This will allow the line to move to the specified position and assume
a natural position, that is then physically accurate as it will be computed by the structural
solver itself. The time at which the constraint is satisfied needs to be long enough so that
the structural accelerations of the lines is small. If not, traveling waves can be generated in
the line, which may take a long time to damp out, artificially increasing the transient. This
initialization simulation is best run without water and wind forces. We then use the option
data read_write_initcond 0 1 in the line initialization to write a file containing the
position of the nodes of the line at final position, i.e. at the end of the simulation time.

2. Production run: The final position of the files stored in the above mentioned file will
consist in the initial condition of the lines in the production simulation. With this respect, the
command needs now to be changed to data read_write_initcond 1 0 to signify that the
initial condition is now read and not written to file. The time in the ID <x> <y> <z> <time>

and ID <time> respectively for the fixed to body relative and fixed to body constraints can now
be set to a small value, ideally to zero. However, small discrepancies are to be expected between
the final position of the line in the initialization simulation and the required initial position in
the production run, so a value different from zero may be used here.

D.3.1 Important notes for the line initialization procedure

• The initialization and production simulation do not need to be the same, i.e. to have the
same number of bodies. As far as the final position of the line is consistent, the initialization
simulation could be run with a single dummy body.

• It is suggested to fix all present multibodies to the global reference system when running
the initialization simulation, and possibly to turn off gravity on them, but not the one for
the lines, as f.ex. in catenary mooring we do want the lines to assume a natural shape,
driven by their own weight.

• It is suggested to switch off the wave and wind loads for the lines in the initialization
simulation, as this could lead to convergence issues.

• The simulation time for the initialization simulation needs to be larger or equal to the time
at which the constraint is satisfied.

D.3.2 Format of the line initialization file

The file that is written by ESYSMooring initialization routine is quite simple. In practice, it stores
the coordinates of the nodes sequentially, stasrting from node 1 to the last node, in global coordi-
nates. If the samefile is specified for all the lines via thedata read_write_initcond_file <fname> ;

command, then the node coordinates are written in the same order in which the lines are defined.
If the file name is not provided,the default file name is used, ESYSMooring_init.dat.

Assuming we have m lines, each one with n nodes, the format of the file is therefore:

158 -

https://gitlab.windenergy.dtu.dk/HAWC2Public/examples

l1_x1 l1_y1 l1_z1

l1_x2 l1_y2 l1_z2

...

l1_xn l1_yn l1_zn

l2_x1 l2_y1 l2_z1

l2_x2 l2_y2 l2_z2

...

lm_xn lm_yn lm_zn

where l1_x1 is the x-coordinate for the first node of the first line, while lm_yn is the y-coordinate
of the n-th node of the m-th line.

If particular initial conditions of the lines are needed, the coordinates of the nodes can f.ex. be
generated via a scripting language and then written to file in this format. If properly formatted,
ESYSMooring will be able to load them in.

D.4 List of Channels in the HAWC2 output

To switch on the output for a generic line named lineX the following line needs to be specified
in the HAWC2 output section

esys lineX;

In the HAWC2 output files, the results for the mooring line are stored according to the following
format. The output comes in blocks of 4 values, which are the X,Y,Z position of a mooring
node and the axial tension experienced at that node. For a given mooring line lineX discretized
in N elements, the line will have N+1 nodes and the output channels will be sorted like shown
below. All coordinates are given in HAWC2’s global coordinate system.

ESYS lineX SENSOR 1 X position of node 1

ESYS lineX SENSOR 2 Y position of node 1

ESYS lineX SENSOR 3 Z position of node 1

ESYS lineX SENSOR 4 Tension at node 1

...

ESYS lineX SENSOR 4*i-3 X position of node i

ESYS lineX SENSOR 4*i-2 Y position of node i

ESYS lineX SENSOR 4*i-1 Z position of node i

ESYS lineX SENSOR 4*i Tension at node i

...

ESYS lineX SENSOR 4*(N+1)-3 X position of node N+1

ESYS lineX SENSOR 4*(N+1)-2 Y position of node N+1

ESYS lineX SENSOR 4*(N+1)-1 Z position of node N+1

ESYS lineX SENSOR 4*(N+1) Tension at node N+1

- 159

E ESYSWAMIT user guide

When modelling floating structures in waves, it is common to obtain the hydrodynamic
properties through radiation-diffraction theory. One of the most widely used commercial codes
for such purpose is WAMIT, developed at MIT.

HAWC2 can handle WAMIT outputs and use them to represent hydrodynamic loads on e.g.
floating wind turbines. The interface that couples the WAMIT output to the time-domain
HAWC2 model is called ESYSWAMIT. This guide explains the ESYSWAMIT interface,
including coordinate systems, how to set up the inputs, and the list of output channels. The
reader is assumed to have some knowledge of radiation-diffraction theory in general, and some
experience with WAMIT in particular. In the WAMIT website there are several resources
including manuals, theory and more.

E.1 Coordinate systems

WAMIT, ESYSWAMIT and HAWC2 all use different global coordinate systems, as illustrated
in Figure 11.

Figure 11: Different coordinate systems. The wave propagates in the positive H direction in the
HAWC2 coordinate system.

Due to the different coordinate systems, the same wave heading direction V (deg) is defined
differently and according to:

VESYSWAMIT = VWAMIT − 180 (E.12)

VHAWC2 = −VWAMIT (E.13)

For example, a 30 deg wave heading in WAMIT would correspond to -30 deg in HAWC2 and
to -150 deg (or 210 deg) in ESYSWAMIT.

160 -

https://www.wamit.com/

E.2 Running WAMIT

Instructions on how to run a WAMIT analysis are out of the scope of this guide. However,
here we point at specific points to take into account when running a WAMIT analysis with the
purpose of coupling it to HAWC2.

• Center of gravity: the hydrostatic stiffness of a floating body in pitch and roll depends
on the I coordinate of the global center of gravity, I6. However, the hydrostatic properties
are internally corrected by ESYSWAMIT to include the effect of the global I6 (including
tower, rotor, etc.). Thus, for consistency the WAMIT analysis should be carried out with
I6 = 0.

• Coordinate system: for the reasons explained in Section E.1, the floater in the WAMIT
setup must be rotated 180 deg around the I axis. Consequently, the desired wave headings
must be offset according to (E.12). For example, if the original WAMIT analysis was to be
carried out for V, �"�) = 0, after rotating the floater in WAMIT by 180 deg around I the
analysis should be carried out for V, �"�) = 180.

Once the WAMIT analysis is completed, the following files will be needed by ESYSWAMIT:

• The .hst file, which contains the hydrostatic restoring matrix.

• The .1 file, which contains the frequency-dependent radiation matrices (added mass and
damping).

• The .3 file, which contains the frequency- and wave direction-dependent transfer function
from free-surface elevation to wave loads.

For rapid visualization of WAMIT panels and output data, we recommend the open-source tool
BEMRosetta.

E.3 Running HAWC2 with ESYSWAMIT

Obl. Command name Explanation
* begin ext_sys First line in ESYSWAMIT.
* module ESYSWamit Module ID (fixed)
* name floater Name of system used as reference
* dll esyswamit.dll DLL file
* ndata <n> Number of data input lines below including

"data END"
* data WAMIT_FILE <s> path to WAMIT files
* data GRAVITY <g> Gravity acceleration [m/s2]
* data DENSITY <d> Water density [kg/m3]
* data TIME_STEP <dt> Global time step [s]
* data MASS <m> Mass of floating substructure (including

ballast) [kg]
* data COG <x> <y> <z> Center of gravity coordinates [m]
* data BUOY <F_B> Buoyancy force [N]
* data COB_XY <x> <y> Center of Buoyancy (x,y) coordinates [m]
* data RIJ_COG <i> <j> <RIJ> Radii of gyration (relative to COG) J(i,j) =

MASS * ABS(RIJ) * RIJ
* data INI_POS <x> <y> <z> Initial position [m]
* data INIT_ROT <x> <y> <z> Initial rotation [deg]
* data STIF <i> <j> <K(i,j)> Linear stiffness coefficient, so that the

external FORCE(i) += -K(i,j)*X(j)

- 161

https://github.com/BEMRosetta/BEMRosetta

Obl. Command name Explanation
* data DAMP <i> <j> <C(i,j)> Linear drag/damping coefficient, so that the

external FORCE(i) += -C(i,j)*V(j)
* data QUAD_DRAG <i> <j> <QC(i,j)> Quadratic drag coefficient, so that the exter-

nal FORCE(i) += -QC(i,j)*ABS(V(j))*V(j)
* data IRF_TIME_SPAN <T_irf> Truncation time for radiation/diffraction

IRF functions [s]. Note that both the first
and last 2*IRF_TIME_SPAN should be
discarded from the simulation.

* data WAVE_DIR <beta> Wave direction (0 deg: Going in the X-
direction, 90 going in in Y-direction, etc.)
(Default = 0 deg)

* data DUMP_FILE_PREFIX <s> prefix for dump of radiation/diffraction files
* data DIFFRACTION_METHOD <s> Calculation method of diffraction force.

Options:
* "IRF_0" = convolution using wave at the

initial position (default)
* "IRF_1" = convolution using wave at the

instantaneous position
* "FFT_0" = pre-generated using IFFT
* data INCLUDE_QTF <SUM> <DIFF>

<fcut>
Include sum-frequency QTF; Include
difference-frequency QTF; Cut-off Fre-
quency

* data END MUST be the last line in the input block
* end ext_sys Last line in ESYSWAMIT.

E.4 Adding drag loads

If inertia loads on a submerged member are already modelled through WAMIT, then HAWC2
must only add viscous drag loads through the Morison equation. To disable the inertia Morison
loads, the following must be done in the corresponding sec command of the hydro_element
block:

Column Description Value
2 added mass coefficient, �0 -1
4 cross-sectional area, � c

4 �
2

5 cross-sectional area for �0, �A c
4 �

2

6 width or diameter, � �

9 axial added mass coefficient, �0,0G 0
11 internal cross-sectional area, (8 c

4 �
2

E.5 Floater visualization

It is now possible to visualize the floater in the HAWC2Visualization tool. HAWC2 currently
supports only one mesh format, namely the .stl binary files. A specification for the format is
available f.ex. here. You can easily export the geometry from any CAD program. If a different
mesh format is required, please file a feature request.

For a successful use of this functionality, it must be noted that:

• The mesh coordinates need to be stored in the WAMIT coordinate system, see Figure 11
for further specifications.

• The.stlfile needs to have the samenameof the files specified via thedata WAMIT_FILE <s>

162 -

https://tools.windenergy.dtu.dk/demo/HAWC2Visualization.html
https://en.wikipedia.org/wiki/STL_(file_format)

command.

• The file needs to be in the folder before the simulation is run, as the ESYSWamit is storing
the coordinates of the mesh in the HDF5 file produced by the visualization command
from the simulation block.

• To visualize the floater, you need to have version 0.8.1 of the HAWC2Visualization tool,
and at least version 12.9.15 of HAWC2MB.

E.6 ESYSWAMIT output channels

The ESYSWAMIT output comes in blocks of 6 corresponding to the 6 states (3 displacements
and 3 rotations) of the floater, in the following order: floater motion (displacement, velocity,
acceleration), loads (radiation, diffraction, sum QTF, diff QTF, total QTF, constraint, drag), and
free-surface elevation.

The QTF channels only exist if the QTF option is enabled. The constraint force is the sum all
external constraint forces, e.g. if you have 3 mooring lines and a tower structure connected, it
will be the sum of those four force/moment contributions. In total one would have 6×7+1=43
channels if QTF is disabled (see Section E.6.1), or 6×10+1=61 channels if QTF is enabled (see
Section E.6.2).

Note also that the ESYSWAMIT output is given in the ESYSWAMIT coordinate system, which
is different from the HAWC2 coordinate system.

E.6.1 Channel list without QTF

ESYS floater SENSOR 1 surge displacement

ESYS floater SENSOR 2 sway displacement

ESYS floater SENSOR 3 heave displacement

ESYS floater SENSOR 4 roll displacement

ESYS floater SENSOR 5 pitch displacement

ESYS floater SENSOR 6 yaw displacement

ESYS floater SENSOR 7 surge velocity

ESYS floater SENSOR 8 sway velocity

ESYS floater SENSOR 9 heave velocity

ESYS floater SENSOR 10 roll velocity

ESYS floater SENSOR 11 pitch velocity

ESYS floater SENSOR 12 yaw velocity

ESYS floater SENSOR 13 surge acceleration

ESYS floater SENSOR 14 sway acceleration

ESYS floater SENSOR 15 heave acceleration

ESYS floater SENSOR 16 roll acceleration

ESYS floater SENSOR 17 pitch acceleration

ESYS floater SENSOR 18 yaw acceleration

ESYS floater SENSOR 19 surge radiation force

ESYS floater SENSOR 20 sway radiation force

ESYS floater SENSOR 21 heave radiation force

ESYS floater SENSOR 22 roll radiation moment

ESYS floater SENSOR 23 pitch radiation moment

ESYS floater SENSOR 24 yaw radiation moment

- 163

ESYS floater SENSOR 25 surge diffraction force

ESYS floater SENSOR 26 sway diffraction force

ESYS floater SENSOR 27 heave diffraction force

ESYS floater SENSOR 28 roll diffraction moment

ESYS floater SENSOR 29 pitch diffraction moment

ESYS floater SENSOR 30 yaw diffraction moment

ESYS floater SENSOR 31 surge constraint force

ESYS floater SENSOR 32 sway constraint force

ESYS floater SENSOR 33 heave constraint force

ESYS floater SENSOR 34 roll constraint moment

ESYS floater SENSOR 35 pitch constraint moment

ESYS floater SENSOR 36 yaw constraint moment

ESYS floater SENSOR 37 free-surface elevation

E.6.2 Channel list with QTF

ESYS floater SENSOR 1 surge displacement

ESYS floater SENSOR 2 sway displacement

ESYS floater SENSOR 3 heave displacement

ESYS floater SENSOR 4 roll displacement

ESYS floater SENSOR 5 pitch displacement

ESYS floater SENSOR 6 yaw displacement

ESYS floater SENSOR 7 surge velocity

ESYS floater SENSOR 8 sway velocity

ESYS floater SENSOR 9 heave velocity

ESYS floater SENSOR 10 roll velocity

ESYS floater SENSOR 11 pitch velocity

ESYS floater SENSOR 12 yaw velocity

ESYS floater SENSOR 13 surge acceleration

ESYS floater SENSOR 14 sway acceleration

ESYS floater SENSOR 15 heave acceleration

ESYS floater SENSOR 16 roll acceleration

ESYS floater SENSOR 17 pitch acceleration

ESYS floater SENSOR 18 yaw acceleration

ESYS floater SENSOR 19 surge radiation force

ESYS floater SENSOR 20 sway radiation force

ESYS floater SENSOR 21 heave radiation force

ESYS floater SENSOR 22 roll radiation moment

ESYS floater SENSOR 23 pitch radiation moment

ESYS floater SENSOR 24 yaw radiation moment

ESYS floater SENSOR 25 surge diffraction force

ESYS floater SENSOR 26 sway diffraction force

ESYS floater SENSOR 27 heave diffraction force

ESYS floater SENSOR 28 roll diffraction moment

ESYS floater SENSOR 29 pitch diffraction moment

ESYS floater SENSOR 30 yaw diffraction moment

164 -

ESYS floater SENSOR 31 surge sum QTF force

ESYS floater SENSOR 32 sway sum QTF force

ESYS floater SENSOR 33 heave sum QTF force

ESYS floater SENSOR 34 roll sum QTF moment

ESYS floater SENSOR 35 pitch sum QTF moment

ESYS floater SENSOR 36 yaw sum QTF moment

ESYS floater SENSOR 37 free-surface elevation

ESYS floater SENSOR 38 surge diff QTF force

ESYS floater SENSOR 39 sway diff QTF force

ESYS floater SENSOR 40 heave diff QTF force

ESYS floater SENSOR 41 roll diff QTF moment

ESYS floater SENSOR 42 pitch diff QTF moment

ESYS floater SENSOR 43 yaw diff QTF moment

ESYS floater SENSOR 44 surge total QTF force

ESYS floater SENSOR 45 sway total QTF force

ESYS floater SENSOR 46 heave total QTF force

ESYS floater SENSOR 47 roll total QTF moment

ESYS floater SENSOR 48 pitch total QTF moment

ESYS floater SENSOR 49 yaw total QTF moment

ESYS floater SENSOR 50 surge constraint force

ESYS floater SENSOR 51 sway constraint force

ESYS floater SENSOR 52 heave constraint force

ESYS floater SENSOR 53 roll constraint moment

ESYS floater SENSOR 54 pitch constraint moment

ESYS floater SENSOR 55 yaw constraint moment

ESYS floater SENSOR 56 surge drag force

ESYS floater SENSOR 57 sway drag force

ESYS floater SENSOR 58 heave drag force

ESYS floater SENSOR 59 roll drag moment

ESYS floater SENSOR 60 pitch drag moment

ESYS floater SENSOR 61 yaw drag moment

F Code Version Data

The release notes from all previous HAWC2 releases are included as a text file in the all-in-one
download package available on http://tools.windenergy.dtu.dk/HAWC2/downloads.

- 165

http://tools.windenergy.dtu.dk/HAWC2/downloads

www.risoe.dk

Risø’s research is aimed at solving concrete

problems in the society.

Research targets are set through continuous

dialogue with business, the political system and

researchers.

The effects of our research are sustainable energy

supply and new technology for the health

sector.

	Cover
	Table of contents
	Preface
	Acknowledgements
	Contributors
	Getting started with HAWC2
	Running HAWC2
	Folder structure
	Debugging models

	General input layout
	Continue_in_file option

	HAWC2 version handling
	Coordinate systems
	Simulation
	Main command block - Simulation
	Sub command block - newmark

	Structural input
	Main command block - new_htc_structure
	Sub command block - main_body
	Sub sub command block – timoschenko_input
	Sub sub command block – c2_def
	Sub sub command - damping_distributed
	Sub sub command – damping_posdef_distributed
	Sub sub command – visualization_profile

	Sub command - orientation
	Sub sub command - base
	Sub sub command - relative

	Sub command - constraint
	Sub sub command – fix0
	Sub sub command – fix1
	Sub sub command – fix2
	Sub sub command – fix3
	Sub sub command – fix4
	Sub sub command – bearing1
	Sub sub command – bearing2
	Sub sub command – bearing3
	Sub sub command – bearing4
	Sub sub command – bearing5

	DLL control
	Main command block – dll
	Important note about DLL file names
	Sub command block – hawc_dll
	Sub command block – type2_dll
	Sub command block - init
	Sub command block – output
	Sub command block – actions
	hawc_dll format example written in FORTRAN 90
	hawc_dll format example written in Delphi / Lazarus / Pascal
	hawc_dll format example written in C
	type2_dll written in Delphi / Lazarus / Delphi
	type2_dll written in C
	type2_dll format example written in FORTRAN 90

	Wind and Turbulence
	Main command block -wind
	Sub command block - mann
	Mann turbulence format

	Sub command block - flex
	File description of a user defined shear
	Example of user defined shear file
	File description of a user defined shear turbulence
	Example of user defined shear turbulence file
	Sub command block - wakes
	File description of a user defined wake deficit file
	Example of user defined wake deficit file
	Sub command block – tower_shadow_potential
	Sub command block – tower_shadow_jet
	Sub command block – tower_shadow_potential_2
	Sub command block – tower_shadow_jet_2
	Sub command block – user_wind_dll
	Sub command block – turb_export
	How the wind speed is constructed

	Aerodynamics
	Main command block - aero
	Sub command block – dynstall_so
	Sub command block – dynstall_mhh or dynstall_ateflap
	Sub command block – aero_noise
	Sub command block – bemwake_method
	Sub command block – nearwake_method
	Sub command block – vawtwake_method
	Data format for the aerodynamic layout
	Example of an aerodynamic blade layout file
	Data format for the profile coefficients file
	Example of the profile coefficients file “_pc file”
	Data format for the flap steady aerodynamic input (.ds file)
	Example of a .ds flap steady aerodynamic input file
	Data format for the user defined a-ct relation
	Data format for the trailing edge noise model (bldata)
	Example of a trailing-edge noise model file (bldata)
	Main command block – blade_c2_def (for use with old_htc_structure format)
	Data format for the user defined a-ct table

	Aerodrag (for tower and nacelle drag)
	Main command aerodrag
	Subcommand aerodrag_element

	Hydrodynamics
	Main command block - hydro
	Sub command block – water_properties
	Sub command block – hydro_element
	Description of the water_kinematics_dll format.
	User manual to the standard wkin.dll version 2.8.3
	Main commands in the wkin.dll
	Sub command reg_airy
	Sub command ireg_airy
	Sub sub command pregen_field

	Sub command det_airy
	Sub command strf
	Sub command wavemods
	Wkin.dll example file

	Soil module
	Main command block - soil
	Sub command block – soil_element
	Data format of the soil spring datafile

	External forces
	Main command block – Force
	Sub command - Base
	Sub command - DLL

	Example of a DLL interface written in fortran90
	Example of a DLL interface written in Lazarus / Pascal

	Output
	Only option
	Label option
	Custom sensor name, unit and description
	Derived sensors
	Commands used with results file writing
	File format of HAWC_ASCII files
	File format of HAWC_BINARY files
	File format for gtsdf and gtsdf64 files
	Hub- and nacelle-lidar sensors
	mbdy (main body output commands)
	Constraint (constraint output commands)
	bearing1
	bearing2
	bearing3
	bearing4

	aero (aerodynamic related commands)
	wind (wind output commands)
	wind_wake (wind wake output commands)
	dll (DLL output commands)
	hydro (hydrodynamic output commands)
	External forces
	general (general output commands)

	Output_at_time (output at a given time)
	aero (aerodynamic output commands)

	Input file encryption
	DLL format
	Encrypted binary format
	How to encrypt data files
	Using encrypted data files
	Disabled output

	Examples and Reference Models
	References
	Example of main input file
	User guide for user-wind-dll
	Htc file input
	DLL interface definition
	FORTRAN example
	C example

	Fit of structural damping
	Formulation
	HAWC2 implementation
	Usage considerations
	Consistently use matched input and damping file
	Tune on full or main body only models
	Number of modes to target

	ESYSMooring user guide
	Definition of the mooring line
	Constraints
	Bar fixed to bar (cstrbarfixedtobar)
	Bar fixed to bar (cstrbarfixedtoglobal)
	Bar fixed to bar (cstrbarfixedtobody)
	Bar fixed to bar (cstrbarfixedtobodyrelative)

	Procedure for mooring initialization
	Important notes for the line initialization procedure
	Format of the line initialization file

	List of Channels in the HAWC2 output

	ESYSWAMIT user guide
	Coordinate systems
	Running WAMIT
	Running HAWC2 with ESYSWAMIT
	Adding drag loads
	Floater visualization
	ESYSWAMIT output channels
	Channel list without QTF
	Channel list with QTF

	Code Version Data

